Iterative Methods and Matrix Analysis (Computer Science)
迭代方法和矩阵分析(计算机科学)
基本信息
- 批准号:9450191
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1994
- 资助国家:美国
- 起止时间:1994-09-01 至 1995-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research is aimed at analyzing and developing iterative methods for solving the nonsymmetric linear systems that arise in many areas of scientific computing. Current iterative methods for solving such problems ar sometimes effective but lack a firm theoretical foundation and may not be robust. Krylov space methods, such as GMRES, will be analyzed and the idea of choosing approximations from different spaces will also be considered. The biconjugate gradient and QMR algorithms will be related and an attempt made to explain their success. Potential for parallelism in various algorithms will be studied and parallel implementations will be developed for specific machine architectures. Collaborations are planned with Nick Trefethen and others in the Computer Science Department at Cornell. Two main activities for interacting with students are: teaching a graduate seminar ("CS 722") on iterative methods and matrix analysis, to familiarize students and other interested scientists and the state of the art in this field; and introducing a sophomore level practicum where, in conjunction with the numerical analysis course CS 222, students will implement parallel numerical algorithms on the machines available at the Cornell Theory Center. Various undergraduate seminars will be organized related to this activity.
这项研究的目的是分析和开发求解科学计算中许多领域中出现的非对称线性方程组的迭代方法。目前解决此类问题的迭代方法有时是有效的,但缺乏坚实的理论基础,而且可能不是很健壮。将分析Krylov空间方法,如GMRES,并将考虑从不同空间选择近似的想法。双共轭梯度算法和QMR算法将相互关联,并试图解释它们的成功。将研究各种算法中并行性的可能性,并针对特定的机器体系结构开发并行实现。计划与尼克·特雷费森和康奈尔大学计算机科学系的其他人合作。与学生互动的两个主要活动是:教授关于迭代方法和矩阵分析的研究生研讨会(“CS 722”),以熟悉学生和其他感兴趣的科学家以及该领域的最新技术;以及引入二年级水平的实践,结合数值分析课程CS 222,学生将在康奈尔理论中心提供的机器上实施并行数值算法。将组织各种与此活动相关的本科生研讨会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anne Greenbaum其他文献
Numerical stability of GMRES
GMRES 的数值稳定性
- DOI:
10.1007/bf01732607 - 发表时间:
1995 - 期刊:
- 影响因子:1.5
- 作者:
J. Drkosová;Anne Greenbaum;M. Rozložník;Z. Strakoš - 通讯作者:
Z. Strakoš
Comparison of linear system solvers applied to diffusion-type finite element equations
- DOI:
10.1007/bf01396343 - 发表时间:
1989-06-01 - 期刊:
- 影响因子:2.200
- 作者:
Anne Greenbaum;Congming Li;Han Zheng Chao - 通讯作者:
Han Zheng Chao
2023 Comparison of Some Bounds on Norms of Functions of a Matrix or Operator
2023 矩阵或算子函数范数的一些界的比较
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Anne Greenbaum;Natalie Wellen - 通讯作者:
Natalie Wellen
Near-Optimality Guarantees for Approximating Rational Matrix Functions by the Lanczos Method
Lanczos 方法逼近有理矩阵函数的近最优保证
- DOI:
10.48550/arxiv.2303.03358 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Noah Amsel;Tyler Chen;Anne Greenbaum;Cameron Musco;Christopher Musco - 通讯作者:
Christopher Musco
Numerical bounds on the Crouzeix ratio for a class of matrices
一类矩阵的 Crouzeix 比率的数值界限
- DOI:
10.48550/arxiv.2311.13890 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Michel Crouzeix;Anne Greenbaum;Kenan Li - 通讯作者:
Kenan Li
Anne Greenbaum的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anne Greenbaum', 18)}}的其他基金
Applied Matrix Theory and Complex Approximation: Estimating Norms of Functions of Matrices
应用矩阵理论和复近似:估计矩阵函数的范数
- 批准号:
1210886 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Continuing Grant
Beyond Eigenvalues - Describing the Behavior of Nonnormal Matrices and Linear Operators
超越特征值 - 描述非正态矩阵和线性运算符的行为
- 批准号:
0208353 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Standard Grant
Preconditioned Interative Methods for Large Linear Systems
大型线性系统的预条件交互方法
- 批准号:
9802919 - 财政年份:1998
- 资助金额:
-- - 项目类别:
Standard Grant
U.S.-Czechoslovakia Mathematics Research on Iterative Methods for Nonsymmetric Linear Systems and Eigenvalue Problems
美捷数学非对称线性系统与特征值问题迭代方法研究
- 批准号:
9218024 - 财政年份:1993
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Study on knowledge discovery methods based on matrix factorization
基于矩阵分解的知识发现方法研究
- 批准号:
23K11229 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development and application of weighted adjacency matrix estimation methods based on multivariate data
基于多元数据的加权邻接矩阵估计方法的开发与应用
- 批准号:
23K01377 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fast numerical methods for solving large-scale matrix equations
求解大规模矩阵方程的快速数值方法
- 批准号:
23K19951 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
Functional Analytic Methods in Matrix Theory, Majorization and Quantum Information
矩阵理论、大化和量子信息中的泛函分析方法
- 批准号:
RGPIN-2022-04149 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Developing omics methods to determine if skin active treatments can restore a youthful extracellular matrix in pre and post menopausal skin
开发组学方法以确定皮肤活性治疗是否可以恢复绝经前后皮肤年轻的细胞外基质
- 批准号:
BB/X511523/1 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Training Grant
Developing -omics methods to determine if skin active treatments can restore a youthful extracellular matrix in pre- and post-menopausa
开发组学方法来确定皮肤活性治疗是否可以在绝经前和绝经后恢复年轻的细胞外基质
- 批准号:
2763571 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
Operator theory and matrix analysis methods in quantum information theory
量子信息论中的算子理论和矩阵分析方法
- 批准号:
RGPIN-2019-05276 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Identification of the main source of matrix effects in established inductively coupled plasma mass spectroscopy methods
确定已建立的电感耦合等离子体质谱方法中基质效应的主要来源
- 批准号:
565142-2021 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Integration of Randomized Methods and Fast and Reliable Matrix Computations
随机方法与快速可靠的矩阵计算的集成
- 批准号:
2111007 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Applied Harmonic Analysis Methods for Non-Convex Optimizations and Low-Rank Matrix Analysis
非凸优化和低阶矩阵分析的应用调和分析方法
- 批准号:
2108900 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant