Career: Probabilistic Methods and Algorithms to Solve Protein Folding Problems
职业:解决蛋白质折叠问题的概率方法和算法
基本信息
- 批准号:9501997
- 负责人:
- 金额:$ 12.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing grant
- 财政年份:1995
- 资助国家:美国
- 起止时间:1995-07-01 至 1999-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project is in the area of computational molecular biology; specifically it addresses problems in protein folding and the self-assembly of virus shells. The `grand challenge` problem associated with protein folding is to determine how a protein will fold in 3-dimensions when given only its amino acid sequence. An important first step in tackling the protein folding problem is a solution to the motif recognition problem (i.e., given a known 3D structure, or motif, determining whether this motif occurs in an unknown amino acid sequence). The goal of this effort is to develop new algorithms, based solely on the right pairwise correlation probabilities, which out perform existing motif recognition algorithms. An implementation of these algorithms, is being programmed. In fact, the package is aiding in the discovery of the coiled-coil motif in such viruses as Mollney murine leukemia, influenza hemagglutinin, and HIV. The coiled-coil motif is thought to be the mechanism by which proteins fuse with or bind to the cell membrane. This continuing research deals with recognizing motifs when less data is available, predicting inter-strand interactions in motifs, and finding new insights into the 3-dimensional structure of proteins. The second part of the project involves studying the self-assembly of virus shells. In particular, by computationally modeling how these shells are built, it is hopefully possible to suggest ways of interfering with the growth of these viruses and of causing their deformity. The Educational Component of this CAREER Grant includes: (a) Development of interdisciplinary (computer science, mathematics, and biology) undergraduate and graduate courses and curriculum in computational molecular biology, discrete mathematics and the theory of (biological) algorithms; (b) Development of both undergraduate and graduate seminars in computational molecular biology. Participation of undergraduate students in developing the extended system project and the Virus Shell Assembly project. (This is part of the Research Experiences for Undergraduates Program at NSF and Undergraduate Research Opportunities Program of MIT.)
该项目是在计算分子生物学领域,特别是它解决了蛋白质折叠和自组装的问题 病毒外壳 与蛋白质折叠相关的“重大挑战”问题是确定蛋白质在仅给定其氨基酸序列时如何在三维中折叠。 解决蛋白质折叠问题的重要的第一步是解决基序识别问题(即,给定已知的3D结构或基序,确定该基序是否出现在未知的氨基酸序列中)。 这项工作的目标是开发新的算法, 仅在正确的成对相关概率上,其执行现有的基序识别算法。这些算法的实现,正在编程。 事实上,该软件包有助于发现Mollney小鼠白血病,流感血凝素和HIV等病毒中的卷曲螺旋基序。 卷曲螺旋基序被认为是蛋白质与细胞膜融合或结合的机制。 这项持续的研究涉及在数据较少的情况下识别基序,预测基序中的链间相互作用,并发现蛋白质三维结构的新见解。 该项目的第二部分涉及研究病毒外壳的自组装。 特别是,通过计算模拟这些外壳是如何构建的,希望有可能提出干扰这些病毒生长并导致其畸形的方法。 该职业补助金的教育部分包括:(a)开发跨学科(计算机科学,数学和生物学)本科和研究生课程以及计算分子生物学,离散数学和(生物)算法理论的课程;(B)开发计算分子生物学的本科和研究生研讨会。 本科生参与开发扩展系统项目和病毒外壳组装项目。 (This是NSF本科生研究经验计划和麻省理工学院本科生研究机会计划的一部分。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bonnie Berger其他文献
mapquik: Efficient low-divergence mapping of long reads in minimizer space
mapquik:最小化空间中长读取的高效低发散映射
- DOI:
10.1101/2022.12.23.521809 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Barış Ekim;Kristoffer Sahlin;P. Medvedev;Bonnie Berger;R. Chikhi - 通讯作者:
R. Chikhi
Contrasting drugs from decoys
诱饵对比药物
- DOI:
10.1101/2022.11.03.515086 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Samuel Sledzieski;Rohit Singh;L. Cowen;Bonnie Berger - 通讯作者:
Bonnie Berger
Emerging technologies towards enhancing privacy in genomic data sharing
- DOI:
10.1186/s13059-019-1741-0 - 发表时间:
2019-07-02 - 期刊:
- 影响因子:9.400
- 作者:
Bonnie Berger;Hyunghoon Cho - 通讯作者:
Hyunghoon Cho
Predicting the β-helix fold from protein sequence data
从蛋白质序列数据预测 β 螺旋折叠
- DOI:
10.1145/369133.369171 - 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
Phil Bradley;L. Cowen;Matthew Menke;Jonathan King;Bonnie Berger - 通讯作者:
Bonnie Berger
Scanorama: integrating large and diverse single-cell transcriptomic datasets
扫描组学:整合大型多样的单细胞转录组数据集
- DOI:
10.1038/s41596-024-00991-3 - 发表时间:
2024-06-06 - 期刊:
- 影响因子:16.000
- 作者:
Brian L. Hie;Soochi Kim;Thomas A. Rando;Bryan Bryson;Bonnie Berger - 通讯作者:
Bonnie Berger
Bonnie Berger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bonnie Berger', 18)}}的其他基金
The Nineteenth International Conference on Research in Computational Molecular Biology (RECOMB 2015)
第十九届国际计算分子生物学研究会议 (RECOMB 2015)
- 批准号:
1506901 - 财政年份:2015
- 资助金额:
$ 12.46万 - 项目类别:
Standard Grant
Collaborative Research: Building an Experimentally Constrained Local Rules Based Simulaator of Virus Shell Assembly
协作研究:构建基于实验约束的局部规则的病毒壳组装模拟器
- 批准号:
9711234 - 财政年份:1997
- 资助金额:
$ 12.46万 - 项目类别:
Standard Grant
Mathematical and Computer Sciences: Postdoctoral Research Fellowship
数学和计算机科学:博士后研究奖学金
- 批准号:
9007240 - 财政年份:1990
- 资助金额:
$ 12.46万 - 项目类别:
Fellowship Award
相似海外基金
Analytic and Probabilistic Methods in Geometric Functional Analysis
几何泛函分析中的解析和概率方法
- 批准号:
2246484 - 财政年份:2023
- 资助金额:
$ 12.46万 - 项目类别:
Standard Grant
Disaster Resilience of Urban Communities in Canada: New Probabilistic Models and Computational Methods
加拿大城市社区的抗灾能力:新的概率模型和计算方法
- 批准号:
RGPIN-2019-03991 - 财政年份:2022
- 资助金额:
$ 12.46万 - 项目类别:
Discovery Grants Program - Individual
Probabilistic methods towards understanding complex human phenotypes using genomic and healthcare data
使用基因组和医疗数据理解复杂人类表型的概率方法
- 批准号:
RGPIN-2019-06216 - 财政年份:2022
- 资助金额:
$ 12.46万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: AF: Small: A Unified Framework for Analyzing Adaptive Stochastic Optimization Methods Based on Probabilistic Oracles
合作研究:AF:Small:基于概率预言的自适应随机优化方法分析统一框架
- 批准号:
2139735 - 财政年份:2022
- 资助金额:
$ 12.46万 - 项目类别:
Standard Grant
Probabilistic methods in KPZ universality and stochastic optimisation
KPZ 普适性和随机优化中的概率方法
- 批准号:
RGPIN-2020-06063 - 财政年份:2022
- 资助金额:
$ 12.46万 - 项目类别:
Discovery Grants Program - Individual
Applications of Analytic and Probabilistic Methods in Convexity to Geometric Functionals
解析和概率方法在几何泛函凸性中的应用
- 批准号:
DGECR-2022-00431 - 财政年份:2022
- 资助金额:
$ 12.46万 - 项目类别:
Discovery Launch Supplement
Applications of Analytic and Probabilistic Methods in Convexity to Geometric Functionals
解析和概率方法在几何泛函凸性中的应用
- 批准号:
RGPIN-2022-02961 - 财政年份:2022
- 资助金额:
$ 12.46万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: AF: Small: A Unified Framework for Analyzing Adaptive Stochastic Optimization Methods Based on Probabilistic Oracles
合作研究:AF:Small:基于概率预言的自适应随机优化方法分析统一框架
- 批准号:
2140057 - 财政年份:2022
- 资助金额:
$ 12.46万 - 项目类别:
Standard Grant
Disaster Resilience of Urban Communities in Canada: New Probabilistic Models and Computational Methods
加拿大城市社区的抗灾能力:新的概率模型和计算方法
- 批准号:
RGPIN-2019-03991 - 财政年份:2021
- 资助金额:
$ 12.46万 - 项目类别:
Discovery Grants Program - Individual
Modelling the shape of Triton's atmosphere using photometric light curves from satellite constellations and probabilistic estimation methods
使用卫星星座的光度曲线和概率估计方法对海卫一的大气形状进行建模
- 批准号:
532704-2019 - 财政年份:2021
- 资助金额:
$ 12.46万 - 项目类别:
Postgraduate Scholarships - Doctoral