Analytic and Probabilistic Methods in Geometric Functional Analysis
几何泛函分析中的解析和概率方法
基本信息
- 批准号:2246484
- 负责人:
- 金额:$ 24.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Geometric functional analysis is concerned with various geometric properties of infinite dimensional linear spaces through their finite dimensional subspaces, a good analogy of which is a CT scan in medical imaging. This project aims to deepen our understanding of existing, as well as to develop new methods, heavily involving probabilistic and analytic ideas, in order to study quantitatively the said geometric properties. A vital part will be student training at both graduate and undergraduate levels and educational activities that will result.More specifically, there are three fundamental questions this project aims to tackle: sharp bounds on Gaussian measures of dilates of symmetric convex sets, volumetric bounds on sections of convex bodies, and quantitative aspects of concentration with concrete applications to convex geometry and geometry of numbers. The focus is on new methods, particularly, the Fourier approach to geometric tomography, blended with the novel reverse Hölder inequalities for negative moments, as well as applications of entropy to quantify concentration.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
几何泛函分析是通过无限维线性空间的有限维子空间来研究无限维线性空间的各种几何性质,医学成像中的CT扫描就是一个很好的类比。该项目旨在加深我们对现有的理解,以及开发新的方法,大量涉及概率和分析思想,以定量研究上述几何性质。研究生和本科阶段的学生培训以及由此产生的教育活动将是至关重要的一部分。更具体地说,本项目旨在解决三个基本问题:对称凸集膨胀的高斯测度的尖锐界限,凸体部分的体积界限,以及凸几何和数字几何具体应用的集中的定量方面。重点是新方法,特别是几何层析的傅里叶方法,与负矩的新颖反向Hölder不等式混合,以及熵的应用来量化浓度。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tomasz Tkocz其他文献
Tomasz Tkocz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tomasz Tkocz', 18)}}的其他基金
Analytic, Geometric, and Probabilistic Aspects of High-Dimensional Phenomena
高维现象的分析、几何和概率方面
- 批准号:
1955175 - 财政年份:2020
- 资助金额:
$ 24.24万 - 项目类别:
Standard Grant
相似海外基金
Applications of Analytic and Probabilistic Methods in Convexity to Geometric Functionals
解析和概率方法在几何泛函凸性中的应用
- 批准号:
DGECR-2022-00431 - 财政年份:2022
- 资助金额:
$ 24.24万 - 项目类别:
Discovery Launch Supplement
Applications of Analytic and Probabilistic Methods in Convexity to Geometric Functionals
解析和概率方法在几何泛函凸性中的应用
- 批准号:
RGPIN-2022-02961 - 财政年份:2022
- 资助金额:
$ 24.24万 - 项目类别:
Discovery Grants Program - Individual
FRG: Collaborative Research: Fourier analytic and probabilistic methods in geometric functional analysis and convexity
FRG:协作研究:几何泛函分析和凸性中的傅里叶分析和概率方法
- 批准号:
1111319 - 财政年份:2010
- 资助金额:
$ 24.24万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Fourier analytic and probabilistic methods in geometric functional analysis and convexity
FRG:协作研究:几何泛函分析和凸性中的傅里叶分析和概率方法
- 批准号:
0918623 - 财政年份:2008
- 资助金额:
$ 24.24万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Fourier analytic and probabilistic methods in geometric functional analysis and convexity
FRG:协作研究:几何泛函分析和凸性中的傅立叶分析和概率方法
- 批准号:
0652672 - 财政年份:2007
- 资助金额:
$ 24.24万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Fourier analytic and probabilistic methods in geometric functional analysis and convexity
FRG:协作研究:几何泛函分析和凸性中的傅里叶分析和概率方法
- 批准号:
0652571 - 财政年份:2007
- 资助金额:
$ 24.24万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Fourier analytic and probabilistic methods in geometric functional analysis and convexity
FRG:协作研究:几何泛函分析和凸性中的傅里叶分析和概率方法
- 批准号:
0652684 - 财政年份:2007
- 资助金额:
$ 24.24万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Fourier analytic and probabilistic methods in geometric functional analysis and convexity
FRG:协作研究:几何泛函分析和凸性中的傅立叶分析和概率方法
- 批准号:
0808908 - 财政年份:2007
- 资助金额:
$ 24.24万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Fourier analytic and probabilistic methods in geometric functional analysis and convexity
FRG:协作研究:几何泛函分析和凸性中的傅里叶分析和概率方法
- 批准号:
0652617 - 财政年份:2007
- 资助金额:
$ 24.24万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Fourier analytic and probabilistic methods in geometric functional analysis and convexity
FRG:协作研究:几何泛函分析和凸性中的傅里叶分析和概率方法
- 批准号:
0652722 - 财政年份:2007
- 资助金额:
$ 24.24万 - 项目类别:
Standard Grant