RUI: Applications of Classical Inference Techniques to Multiple-Valued Logics and to Prime Implicate Algorithms

RUI:经典推理技术在多值逻辑和素数蕴涵算法中的应用

基本信息

  • 批准号:
    9504349
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing grant
  • 财政年份:
    1995
  • 资助国家:
    美国
  • 起止时间:
    1995-09-15 至 1999-08-31
  • 项目状态:
    已结题

项目摘要

This project is for research in computational logic. The areas of research stem directly from prior analysis of the structure formulas in negation normal form. That work raised many questions and led to explorations in several directions. Substantial results at the propositional level, preliminary experimental at the first order level, and certain theoretical results that the most important of these may be path dissolution, a rule of inference that is strongly complete at the ground level. This project continues exploration of this and related inference mechanisms, largely through experimentation. One major thrust is to further the implementation of the techniques developed earlier. The current first order system (``Dissolver'') is a solid platform on which the following techniques may be tested: link selection; computing prime implicants; backtracking; theory links and dissolution; and star chains. While abstract proof-theoretic questions are of interest in their own right, enhancing the performance of Dissolver is an important motivation for the theoretical work in this project. The investigations into multiple-valued logics largely fit the category; the study of the following issues contributes to the development of Dissolver: dissolution and multiple-valued logics; dissolution, analytic tableaux, and distributive law; quantifier duplication, proof length, and cycles; algorithms for computing prime implicants; and induction and equality.
这个项目是为了研究计算逻辑。研究领域直接源于先前对否定范式结构公式的分析。这项工作提出了许多问题,并导致了几个方向的探索。命题层面的实质性结果,一阶层面的初步实验,以及某些理论结果,其中最重要的可能是路径溶解,这是一个在基础层面上非常完整的推理规则。这个项目继续探索这个和相关的推理机制,主要是通过实验。一项主要任务是进一步实施先前开发的技术。当前的一阶系统(“溶解器”)是一个坚实的平台,可以在其上测试以下技术:链接选择;计算质数蕴涵;回溯;理论联系与消解;还有星链。虽然抽象的证明理论问题本身就很有趣,但提高溶解器的性能是本项目理论工作的重要动机。对多值逻辑的研究在很大程度上符合这一范畴;对以下问题的研究有助于溶解器的发展:溶解与多值逻辑;分解、分析表和分配律;量词重复,证明长度和循环;计算质数蕴涵的算法;还有归纳法和式。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Erik Rosenthal其他文献

Reduced Implicate/Implicant Tries
减少隐含/隐含尝试
  • DOI:
    10.1007/978-3-540-68123-6_23
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Neil V. Murray;Erik Rosenthal
  • 通讯作者:
    Erik Rosenthal
On the relative merits of path dissolution and the method of analytic tableaux
  • DOI:
    10.1016/0304-3975(94)90089-2
  • 发表时间:
    1994-08-29
  • 期刊:
  • 影响因子:
  • 作者:
    Neil V. Murray;Erik Rosenthal
  • 通讯作者:
    Erik Rosenthal
Prime Implicates and Reduced Implicate Tries
素数蕴含和减少蕴涵尝试
  • DOI:
    10.1007/978-3-642-04125-9_22
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0.5
  • 作者:
    Neil V. Murray;Erik Rosenthal
  • 通讯作者:
    Erik Rosenthal
Updating Reduced Implicate Tries
更新简化隐含尝试
  • DOI:
    10.1007/978-3-540-73099-6_15
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Neil V. Murray;Erik Rosenthal
  • 通讯作者:
    Erik Rosenthal
Efficient Query Processing with Compiled Knowledge Bases
通过编译的知识库进行高效的查询处理
  • DOI:
    10.1007/11554554_18
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Neil V. Murray;Erik Rosenthal
  • 通讯作者:
    Erik Rosenthal

Erik Rosenthal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Erik Rosenthal', 18)}}的其他基金

III-COR: Collaborative Research: Knowledge Compilation with Fast Response
III-COR:协作研究:快速响应的知识编译
  • 批准号:
    0712752
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
SGER: Path Dissolution in Propositional Logic
SGER:命题逻辑中的路径消解
  • 批准号:
    0229339
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
RUI: Implementation and Analysis of Inference Techniques for Classical and Multiple-Valued Logics
RUI:经典和多值逻辑推理技术的实现和分析
  • 批准号:
    9202013
  • 财政年份:
    1992
  • 资助金额:
    --
  • 项目类别:
    Continuing grant
RUI: Implementation and Analysis of Proof Techniques Employing Negation Normal Form
RUI:采用否定范式的证明技术的实现和分析
  • 批准号:
    9005910
  • 财政年份:
    1990
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

Applications of AI in Market Design
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研 究基金项目
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Applications of advances in computer algebra to studying classical integrable systems and related algebraic structures
应用计算机代数的进展来研究经典可积系统和相关代数结构
  • 批准号:
    RGPIN-2017-06330
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Applications of Grover's search: hybrid quantum classical algorithms
Grover 搜索的应用:混合量子经典算法
  • 批准号:
    575054-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Applications of advances in computer algebra to studying classical integrable systems and related algebraic structures
应用计算机代数的进展来研究经典可积系统和相关代数结构
  • 批准号:
    RGPIN-2017-06330
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Applications of probabilistic combinatorics and extremal set theory to deriving bounds in classical and quantum coding theory
概率组合学和极值集合论在经典和量子编码理论中推导界限的应用
  • 批准号:
    20K11668
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Applications of advances in computer algebra to studying classical integrable systems and related algebraic structures
应用计算机代数的进展来研究经典可积系统和相关代数结构
  • 批准号:
    RGPIN-2017-06330
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Clarification of the mathematical structure of quantum-classical hybrid systems based on operational properties of measurement and its applications
基于测量操作特性阐明量子经典混合系统的数学结构及其应用
  • 批准号:
    19K03658
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Applications of scattering amplitudes to classical observables
散射振幅在经典可观测量中的应用
  • 批准号:
    2297355
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Studentship
Analysis of growing sequences of graphs in terms of quantum-classical correspondence and quantum chaos, and its applications
用量子经典对应和量子混沌分析图的增长序列及其应用
  • 批准号:
    19K03608
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Novel Applications of Mixed Quantum-Classical Dynamics to Studies of Charge and Energy Transfer in Chemical and Biological Systems
混合量子经典动力学在化学和生物系统中电荷和能量转移研究中的新应用
  • 批准号:
    RGPIN-2015-04303
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Classical MD with Mobile Protons, with Applications to Membrane Proteins
具有移动质子的经典 MD 及其在膜蛋白中的应用
  • 批准号:
    1855942
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了