SGER: Path Dissolution in Propositional Logic

SGER:命题逻辑中的路径消解

基本信息

  • 批准号:
    0229339
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-10-01 至 2004-09-30
  • 项目状态:
    已结题

项目摘要

ABSTRACT0229339Erik Rosenthal U of New HavenThe problem SAT determining whether a formula in propositional logic is satisfiable hasa long history in computer science. It is important in complexity theory and has myriad applicationsin fields such as robotics, optical character recognition, database systems, computerarchitecture, circuit design, and verification, to name but a few.The traditional view of much of the mechanical theorem proving community has been thatinteresting applications of automated deduction require first-order rather than propositionallogic. That view has begun to change in light of recent successes with propositional logic.Propositional logic is of course intractiable (unless NP = P). One approach to this problemwith knowledge representaion and database systems is knowledge compilation preprocessingthe underlying propositional theory. The idea is to do as much computation as possible in anoffline phase. Then queries in the online phase can be handled quickly. Horn clauses, orderedbinary decision diagrams, sets of prime implicates/implicants, and decomposable negationnormal form (DNNF) have all been proposed as targets of such compilation.Path dissolution is an inference mechanism that works naturally with formulas in NNF. Itis strongly complete in the sense that any sequence of link activations will eventually terminate,producing a linkless formula called the full dissolvent. The paths that remain are models of theoriginal formula. Full dissolvents have been used effectively for computing the prime implicantsand implicates of a formula.Decomposable negation normal form was first introduced in 1998 and is currently beingstudied for application to knowledge representation and database systems. A formula in DNNFis a full dissolvent, and it appears that many of the advantages of DNNF exist with full dissolvents.It also appears that a full dissolvent of a formula can be obtained more effciently thana DNNF representation of the formula. The main thrust of this project will be to examine therelationship of DNNF and full dissolvents.
[0229339]在计算机科学中,SAT判定命题逻辑中的公式是否可满足的问题由来已久。它在复杂性理论中很重要,在机器人、光学字符识别、数据库系统、计算机体系结构、电路设计和验证等领域有无数的应用,仅举几例。许多力学定理证明界的传统观点是,自动演绎的有趣应用需要一阶逻辑,而不是命题逻辑。鉴于最近命题逻辑的成功,这种观点已经开始改变。命题逻辑当然是难以处理的(除非NP = P)。知识表示和数据库系统解决这个问题的一种方法是知识编译预处理,这是基础命题理论。其思想是在离线阶段进行尽可能多的计算。然后在线阶段的查询可以快速处理。角子句、有序二元决策图、素数蕴涵/蕴涵集和可分解的负范式(DNNF)都被提出作为这种编译的目标。路径分解是一种自然适用于NNF公式的推理机制。从某种意义上说,它是强完备的,任何链的激活序列最终都会终止,产生一个称为全溶剂的无链公式。剩下的路径是原始公式的模型。全溶剂已被有效地用于计算公式的主隐含式和隐含式。可分解否定范式于1998年首次提出,目前正在研究其在知识表示和数据库系统中的应用。DNNF中的一个公式是一个全溶剂,并且DNNF的许多优点似乎存在于全溶剂中。它还表明,一个公式的完全溶剂可以比该公式的DNNF表示更有效地获得。这个项目的主要目的是研究DNNF和全溶剂的关系。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Erik Rosenthal其他文献

Reduced Implicate/Implicant Tries
减少隐含/隐含尝试
  • DOI:
    10.1007/978-3-540-68123-6_23
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Neil V. Murray;Erik Rosenthal
  • 通讯作者:
    Erik Rosenthal
On the relative merits of path dissolution and the method of analytic tableaux
  • DOI:
    10.1016/0304-3975(94)90089-2
  • 发表时间:
    1994-08-29
  • 期刊:
  • 影响因子:
  • 作者:
    Neil V. Murray;Erik Rosenthal
  • 通讯作者:
    Erik Rosenthal
Prime Implicates and Reduced Implicate Tries
素数蕴含和减少蕴涵尝试
  • DOI:
    10.1007/978-3-642-04125-9_22
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0.5
  • 作者:
    Neil V. Murray;Erik Rosenthal
  • 通讯作者:
    Erik Rosenthal
Updating Reduced Implicate Tries
更新简化隐含尝试
  • DOI:
    10.1007/978-3-540-73099-6_15
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Neil V. Murray;Erik Rosenthal
  • 通讯作者:
    Erik Rosenthal
Efficient Query Processing with Compiled Knowledge Bases
通过编译的知识库进行高效的查询处理
  • DOI:
    10.1007/11554554_18
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Neil V. Murray;Erik Rosenthal
  • 通讯作者:
    Erik Rosenthal

Erik Rosenthal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Erik Rosenthal', 18)}}的其他基金

III-COR: Collaborative Research: Knowledge Compilation with Fast Response
III-COR:协作研究:快速响应的知识编译
  • 批准号:
    0712752
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
RUI: Applications of Classical Inference Techniques to Multiple-Valued Logics and to Prime Implicate Algorithms
RUI:经典推理技术在多值逻辑和素数蕴涵算法中的应用
  • 批准号:
    9504349
  • 财政年份:
    1995
  • 资助金额:
    --
  • 项目类别:
    Continuing grant
RUI: Implementation and Analysis of Inference Techniques for Classical and Multiple-Valued Logics
RUI:经典和多值逻辑推理技术的实现和分析
  • 批准号:
    9202013
  • 财政年份:
    1992
  • 资助金额:
    --
  • 项目类别:
    Continuing grant
RUI: Implementation and Analysis of Proof Techniques Employing Negation Normal Form
RUI:采用否定范式的证明技术的实现和分析
  • 批准号:
    9005910
  • 财政年份:
    1990
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

基于Rough Path理论的分布依赖随机微分方程的平均化原理研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    15.0 万元
  • 项目类别:
    省市级项目
基于先进CMOS工艺的1-30GHz超宽带N-path滤波器研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
带跳的 rough path 理论及其应用
  • 批准号:
    11901104
  • 批准年份:
    2019
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目
按蚊氨基酸运输蛋白PATH对蚊虫传播疟原虫能力的调控及机制研究
  • 批准号:
    81601793
  • 批准年份:
    2016
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

6G-PATH: 6G Pilots and Trials Through Europe
6G-PATH:欧洲 6G 试点和试验
  • 批准号:
    10107746
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Creating a Path to Achieving Success and Sense of Belonging in Computer Science
创造一条在计算机科学领域取得成功和归属感的道路
  • 批准号:
    2322665
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Multiple Team Membership (MTM) through Technology: A path towards individual and team wellbeing?
协作研究:通过技术实现多重团队成员 (MTM):通往个人和团队福祉的道路?
  • 批准号:
    2345652
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Probabilistic Inference Based Utility Evaluation and Path Generation for Active Autonomous Exploration of USVs in Unknown Confined Marine Environments
基于概率推理的效用评估和路径生成,用于未知受限海洋环境中 USV 主动自主探索
  • 批准号:
    EP/Y000862/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Collaborative Research: Multiple Team Membership (MTM) through Technology: A path towards individual and team wellbeing?
协作研究:通过技术实现多重团队成员 (MTM):通往个人和团队福祉的道路?
  • 批准号:
    2345651
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
NSF-SNSF: Crack Path Prediction and Control in Nonlinearly Viscoelastic Materials: in-silico to Experiments with Viscoelastic and Tough Hydrogels
NSF-SNSF:非线性粘弹性材料中的裂纹路径预测和控制:粘弹性和坚韧水凝胶的计算机实验
  • 批准号:
    2403592
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Neural Computational Imaging - A Path Towards Seeing Through Scattering
职业:神经计算成像——透视散射的途径
  • 批准号:
    2339616
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
The Path Towards Addressing Adverse Impacts of Light and Noise Pollution on Terrestrial Biodiversity and Ecosystems (PLAN-B)
解决光和噪音污染对陆地生物多样性和生态系统不利影响的途径 (PLAN-B)
  • 批准号:
    10094373
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
PLAN-B - The Path Towards Addressing Adverse Impacts of Light and Noise Pollution on Terrestrial Biodiversity and Ecosystems
PLAN-B - 解决光和噪音污染对陆地生物多样性和生态系统不利影响的途径
  • 批准号:
    10106103
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了