RUI: A New Method to Obtain Highly Accurate Three Dimensional Analysis of Crack Propagation and Stress on Composite Materials
RUI:一种获得复合材料裂纹扩展和应力高精度三维分析的新方法
基本信息
- 批准号:9504562
- 负责人:
- 金额:$ 4.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1995
- 资助国家:美国
- 起止时间:1995-07-01 至 1997-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Oh The investigator develops numerical methods for solving three-dimensional crack propagation problems. In order to obtain any practical solutions for crack propagation, the Finite Element Method (FEM) requires use of either graded discretizations (very small elements near the crack front, larger elements elsewhere) or special singular basis functions. The graded discretizations make the computation very expensive, while singular basis functions destroy the nice band structure of the FEM. Thus, the standard FEM is impractical for accurate numerical simulation of 3-D crack propagation. The accuracy of the FE solution depends on the regularity of the true solution. The investigator studies a new method, called Method of Auxiliary Mapping (MAM), to deal with three-dimensional singularities: vertex, edge, and edge-vertex. To remove the ineffectiveness of the FEM in the presence of singularities, MAM transforms a region where the stress functions are singular to a region where the transformed stress functions are of higher regularity. The investigator also studies three auxiliary mappings for these purposes. The annual cost of fracture-related damage in the United States (human injury and loss of life aside) has been estimated at more than $10 billion. Metal fatigue has been cited as the probable cause of several recent airline accidents, and the airworthiness of aging fleets is a national concern. Material failures are a major concern for other large engineering structures (ships, bridges, nuclear power plants, hydroelectric dams, and so on). Thus, for effective inspection and preventive maintenance programs, an accurate fracture analysis is demanded. However, because of the complicated geometry and nonlinearities that characterize fracture mechanics, the use of analytical techniques is very limited and in most cases not practical. Numerical methods seem to be the only feasible approach for such analysis. On the basis of very successful results o f the stress analysis for plane elasticity problems, the investigator studies a new method that should yield highly accurate numerical simulation of three-dimensional fracture analysis.
哦,研究人员开发了解决三维裂纹扩展问题的数值方法。为了得到裂纹扩展的实际解,有限元方法需要使用梯度离散(裂纹前沿附近的小单元,其他地方的大单元)或特殊的奇异基函数。梯度离散化使得计算非常昂贵,而奇异基函数破坏了有限元良好的带状结构。因此,标准的有限元方法对于三维裂纹扩展的精确数值模拟是不现实的。有限元解的精度取决于真解的正则性。研究了一种新的处理三维奇点:顶点、边和边-顶点的方法,称为辅助映射法(MAM)。为了消除有限元在存在奇异性时的失效,MAM将应力函数奇异的区域变换为变换后的应力函数具有较高正则性的区域。为了达到这些目的,研究者还研究了三个辅助映射。据估计,美国每年因骨折造成的损失(不包括人员伤亡)超过100亿美元。金属疲劳被认为是最近几起空难的可能原因,老化机队的适航性是一个全国性的问题。材料失效是其他大型工程结构(船舶、桥梁、核电站、水电站等)的主要问题。因此,为了有效的检查和预防性维护计划,需要进行准确的断裂分析。然而,由于断裂力学的复杂几何和非线性特征,分析技术的使用非常有限,在大多数情况下是不实用的。对于这种分析,数值方法似乎是唯一可行的方法。在平面弹性问题应力分析非常成功的基础上,研究了一种能产生高精度三维断裂分析数值模拟的新方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hae-Soo Oh其他文献
Extraction of stress intensity factors of biharmonic equations with corner singularities corresponding to mixed boundary conditions of clamped, simply supported, and free (II)span class="inline-figure"img src="//ars.els-cdn.com/content/image/1-s2.0-S0898122122000359-fx001.jpg" width="17" height="19" //span
对应于夹紧、简支和自由混合边界条件的具有角奇异性的双调和方程应力强度因子的提取(II)
- DOI:
10.1016/j.camwa.2022.01.028 - 发表时间:
2022-03-01 - 期刊:
- 影响因子:2.500
- 作者:
Seokchan Kim;Birce Palta;Jaewoo Jeong;Hae-Soo Oh - 通讯作者:
Hae-Soo Oh
6-dimensional manifolds with effective T4-actions
- DOI:
10.1016/0166-8641(82)90016-5 - 发表时间:
1982-03 - 期刊:
- 影响因子:0.6
- 作者:
Hae-Soo Oh - 通讯作者:
Hae-Soo Oh
Accurate mode-separated energy release rates for delamination cracks
- DOI:
10.1016/j.jcp.2003.07.025 - 发表时间:
2004 - 期刊:
- 影响因子:4.1
- 作者:
Hae-Soo Oh - 通讯作者:
Hae-Soo Oh
Extraction of stress intensity factors of biharmonic equations with free boundary conditions on crack faces (III): SIF of a thin plate subjected to the bending moment
- DOI:
10.1016/j.cam.2024.116087 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Jaewoo Jeong;Hae-Soo Oh - 通讯作者:
Hae-Soo Oh
Hae-Soo Oh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hae-Soo Oh', 18)}}的其他基金
Meshfree particle methods for analysis of elastic plates and shells
用于分析弹性板和壳的无网格粒子方法
- 批准号:
1016060 - 财政年份:2010
- 资助金额:
$ 4.55万 - 项目类别:
Standard Grant
The Reproducing Singularity and Polynomial Particle Shape Functions for Meshless Methods
无网格方法的奇异性和多项式粒子形状函数的再现
- 批准号:
0713097 - 财政年份:2007
- 资助金额:
$ 4.55万 - 项目类别:
Standard Grant
U.S.-Korea Cooperative Science: Accurate Stress Analysis of Fiber-Reinforced Composite Material with Delamination Cracks
美韩合作科学:含分层裂纹的纤维增强复合材料的精确应力分析
- 批准号:
9910345 - 财政年份:2000
- 资助金额:
$ 4.55万 - 项目类别:
Standard Grant
U.S.-Korea Cooperative Research: A New Method to Obtain Highly Accurate Three Dimensional Analysis of Crack Propagation and Stress on Composite Materials
美韩合作研究:一种获得复合材料裂纹扩展和应力高精度三维分析的新方法
- 批准号:
9722699 - 财政年份:1997
- 资助金额:
$ 4.55万 - 项目类别:
Standard Grant
相似海外基金
STTR Phase I: A Reliable and Efficient New Method for Satellite Attitude Control
STTR第一阶段:可靠、高效的卫星姿态控制新方法
- 批准号:
2310323 - 财政年份:2024
- 资助金额:
$ 4.55万 - 项目类别:
Standard Grant
Developing a new method for the identification of cancer in archaeological populations
开发一种鉴定考古群体中癌症的新方法
- 批准号:
2341415 - 财政年份:2024
- 资助金额:
$ 4.55万 - 项目类别:
Standard Grant
CAREER: Develop a Hybrid Adaptive Particle-Field Simulation Method for Solutions of Macromolecules and a New Computational Chemistry Course for Lower-Division Undergraduates
职业:开发用于大分子解决方案的混合自适应粒子场模拟方法以及低年级本科生的新计算化学课程
- 批准号:
2337602 - 财政年份:2024
- 资助金额:
$ 4.55万 - 项目类别:
Standard Grant
Development of a new EBSD analysis method combining dynamical scattering theory and machine learning
结合动态散射理论和机器学习开发新的 EBSD 分析方法
- 批准号:
23H01276 - 财政年份:2023
- 资助金额:
$ 4.55万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
New perspective of moving-boundary flow analysis by the stress tensor discontinuity-based immersed boundary method
基于应力张量不连续性的浸没边界法进行动边界流分析的新视角
- 批准号:
23H01341 - 财政年份:2023
- 资助金额:
$ 4.55万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of tensor network renormalization group method for high dimensions and new understanding of quantum liquid phases
高维张量网络重整化群方法的发展及对量子液相的新认识
- 批准号:
23H01092 - 财政年份:2023
- 资助金额:
$ 4.55万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Vascular age estimation by carotid artery echocardiography - development of a new method to improve the accuracy
通过颈动脉超声心动图估计血管年龄——开发提高准确性的新方法
- 批准号:
23K06864 - 财政年份:2023
- 资助金额:
$ 4.55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of new 3D imaging method using a combination of chromoprotein and CoMBI.
结合色素蛋白和 CoMBI 开发新的 3D 成像方法。
- 批准号:
23K06299 - 财政年份:2023
- 资助金额:
$ 4.55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a new method for evaluating gut microbiota that can be evaluated in a simple, low-cost, and short time
开发一种评估肠道微生物群的新方法,可以在短时间内进行简单、低成本的评估
- 批准号:
23K08476 - 财政年份:2023
- 资助金额:
$ 4.55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of pharmacokinetic control method using new D-BPA glycoconjugate for BNCT
使用新型 D-BPA 糖复合物开发用于 BNCT 的药代动力学控制方法
- 批准号:
23K07088 - 财政年份:2023
- 资助金额:
$ 4.55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)