Meshfree particle methods for analysis of elastic plates and shells
用于分析弹性板和壳的无网格粒子方法
基本信息
- 批准号:1016060
- 负责人:
- 金额:$ 11.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-10-01 至 2013-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A large number of structural components in engineering can be classified as plates. Typical examples of civil engineering structures are floor and foundation slabs, lock-gates, thin retaining walls, bridge decks, and slab bridges. Plates are also indispensable in ship building, automobile, and aerospace industries. The stress resultants of a thin plate can be calculated through the 3-dimensional elasticity equations. However, under certain hypotheses, the 3-dimensional elasticity equations for a plate are reduced to the 2-dimensional equations. The Kirchhoff plate model is well suited for thin plates. However, the governing equation for the displacement of this plate model is the fourth order differential equation. The conventional finite element method is difficult to apply because of the complexity of constructing smooth finite elements. Furthermore, moderately thick plates have other difficulties such as boundary layer problems and shear locking problems. Meshless methods (in which smooth flexible approximation functions are used and complicated mesh generation is not necessary) have several advantages over the conventional finite element method. However, these methods have several major limitations including the inefficiency in handling essential boundary conditions, large matrix condition numbers, and complexity in constructing partitions of unity. Most recently, the PI invented one of the most flexible closed form partition of unity, called the Generalized Product Partition of Unity. The PI proposes to introduce Meshfree particle methods by using the Generalized Product Partition of Unity, together with new local approximation functions that can handle geometric boundary conditions as well as force boundary conditions arising in various plate models. Furthermore, the PI proposes to apply Meshfree particle methods to obtain highly accurate stress analysis of plates and shells for design and maintenance of related engineering structures. The Intellectual Merit: The proposed research will greatly improve the stress analysis of plates, shells, and laminated composite plates so that design and maintenance of automobiles, airplanes, ships, and all other engineering structures related to plates and shells may be more effective and safer. Moreover, without any difficulty, the proposed method is able to surgically make the approximation space enriched with any type of singular function. The proposed method is flexible and effective in dealing with singularities and it can be used for accurate prediction of crack propagation. The Broader Impacts: Results from the proposed research can be used to design fuel efficient automobiles, safer airplanes, ships and new materials more resistant to failure. The proposed research can also be applied to improve maintenance of aging airliners, bridges, ships, buildings, and numerous other applications where structural integrity should be closely monitored. Ultimately, the proposed research will have direct impacts on the public safety and the environment by increasing efficiency and safety of common modes of transportation and structures used everyday.
工程中大量的结构构件都可以归为板类。土木工程结构的典型例子是楼板和基础板、闸门、薄挡土墙、桥面和板桥。板材在造船、汽车和航空航天工业中也是不可或缺的。薄板的应力合成可以通过三维弹性力学方程计算。然而,在某些假设下,三维弹性方程的板减少到二维方程。基尔霍夫板模型非常适合于薄板。然而,该板模型的位移控制方程是四阶微分方程。由于构造光滑有限元的复杂性,传统的有限元方法难以应用。此外,中厚板还有其它困难,如边界层问题和剪切锁定问题。 无网格方法(其中使用光滑灵活的近似函数,并且不需要复杂的网格生成)与传统的有限元方法相比具有几个优点。 然而,这些方法有几个主要的局限性,包括在处理本质边界条件,大矩阵条件数,并在构建单位划分的复杂性的效率低下。 最近,PI发明了一种最灵活的封闭形式单位分割,称为广义单位乘积分割。 PI建议引入无网格粒子方法,通过使用广义乘积单位分解,以及新的局部近似函数,可以处理几何边界条件以及各种板模型中出现的力边界条件。此外,PI建议应用无网格粒子方法来获得板和壳的高精度应力分析,用于相关工程结构的设计和维护。 智力优点:本文的研究成果将极大地改善板壳和复合材料层合板的应力分析,使汽车、飞机、船舶和所有与板壳有关的工程结构的设计和维护更加有效和安全。 此外,没有任何困难,所提出的方法是能够外科手术的近似空间丰富的任何类型的奇异函数。 该方法处理奇异性灵活有效,可用于裂纹扩展的精确预测。 更广泛的影响:这项研究的结果可用于设计省油的汽车、更安全的飞机、船舶和更耐故障的新材料。拟议研究 还可用于改善老化客机、桥梁、船舶、建筑物的维护,以及应密切监测结构完整性的许多其他应用。最终,拟议的研究将通过提高日常使用的常见交通方式和结构的效率和安全性,对公共安全和环境产生直接影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hae-Soo Oh其他文献
Extraction of stress intensity factors of biharmonic equations with corner singularities corresponding to mixed boundary conditions of clamped, simply supported, and free (II)span class="inline-figure"img src="//ars.els-cdn.com/content/image/1-s2.0-S0898122122000359-fx001.jpg" width="17" height="19" //span
对应于夹紧、简支和自由混合边界条件的具有角奇异性的双调和方程应力强度因子的提取(II)
- DOI:
10.1016/j.camwa.2022.01.028 - 发表时间:
2022-03-01 - 期刊:
- 影响因子:2.500
- 作者:
Seokchan Kim;Birce Palta;Jaewoo Jeong;Hae-Soo Oh - 通讯作者:
Hae-Soo Oh
6-dimensional manifolds with effective T4-actions
- DOI:
10.1016/0166-8641(82)90016-5 - 发表时间:
1982-03 - 期刊:
- 影响因子:0.6
- 作者:
Hae-Soo Oh - 通讯作者:
Hae-Soo Oh
Accurate mode-separated energy release rates for delamination cracks
- DOI:
10.1016/j.jcp.2003.07.025 - 发表时间:
2004 - 期刊:
- 影响因子:4.1
- 作者:
Hae-Soo Oh - 通讯作者:
Hae-Soo Oh
Extraction of stress intensity factors of biharmonic equations with free boundary conditions on crack faces (III): SIF of a thin plate subjected to the bending moment
- DOI:
10.1016/j.cam.2024.116087 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Jaewoo Jeong;Hae-Soo Oh - 通讯作者:
Hae-Soo Oh
Hae-Soo Oh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hae-Soo Oh', 18)}}的其他基金
The Reproducing Singularity and Polynomial Particle Shape Functions for Meshless Methods
无网格方法的奇异性和多项式粒子形状函数的再现
- 批准号:
0713097 - 财政年份:2007
- 资助金额:
$ 11.82万 - 项目类别:
Standard Grant
U.S.-Korea Cooperative Science: Accurate Stress Analysis of Fiber-Reinforced Composite Material with Delamination Cracks
美韩合作科学:含分层裂纹的纤维增强复合材料的精确应力分析
- 批准号:
9910345 - 财政年份:2000
- 资助金额:
$ 11.82万 - 项目类别:
Standard Grant
U.S.-Korea Cooperative Research: A New Method to Obtain Highly Accurate Three Dimensional Analysis of Crack Propagation and Stress on Composite Materials
美韩合作研究:一种获得复合材料裂纹扩展和应力高精度三维分析的新方法
- 批准号:
9722699 - 财政年份:1997
- 资助金额:
$ 11.82万 - 项目类别:
Standard Grant
RUI: A New Method to Obtain Highly Accurate Three Dimensional Analysis of Crack Propagation and Stress on Composite Materials
RUI:一种获得复合材料裂纹扩展和应力高精度三维分析的新方法
- 批准号:
9504562 - 财政年份:1995
- 资助金额:
$ 11.82万 - 项目类别:
Standard Grant
相似国自然基金
环形等离子体中的离子漂移波不稳定性和湍流的保结构Particle-in-Cell模拟
- 批准号:11905220
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
高效率单细胞分析微流控芯片的机理研究
- 批准号:31970754
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
酵母RNase MRP的结构及催化机制研究
- 批准号:31900929
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于多禁带光子晶体微球构建"Array on One Particle"传感体系
- 批准号:21902147
- 批准年份:2019
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
微流控技术构筑分子型胶体光子晶体微珠及其在光催化领域的应用研究
- 批准号:21703197
- 批准年份:2017
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
引入昆虫复视机制的粒子滤波算法及其视觉伺服应用研究
- 批准号:61175096
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
电子聚焦电场增强等离子体离子注入/沉积基本理论研究
- 批准号:11075012
- 批准年份:2010
- 资助金额:48.0 万元
- 项目类别:面上项目
微复型过程中聚合物流动填充机理的可视化实验分析
- 批准号:50975227
- 批准年份:2009
- 资助金额:38.0 万元
- 项目类别:面上项目
空气污染(主要是diesel exhaust particle,DEP)和支气管哮喘关系的研究
- 批准号:30560052
- 批准年份:2005
- 资助金额:20.0 万元
- 项目类别:地区科学基金项目
相似海外基金
New Algorithms for Cryogenic Electron Microscopy
低温电子显微镜的新算法
- 批准号:
10543569 - 财政年份:2023
- 资助金额:
$ 11.82万 - 项目类别:
A next-generation extendable simulation environment for affordable, accurate, and efficient free energy simulations
下一代可扩展模拟环境,可实现经济、准确且高效的自由能源模拟
- 批准号:
10638121 - 财政年份:2023
- 资助金额:
$ 11.82万 - 项目类别:
Manipulation of Host Tissue to Induce a Hierarchical Microvasculature
操纵宿主组织以诱导分层微脉管系统
- 批准号:
10637683 - 财政年份:2023
- 资助金额:
$ 11.82万 - 项目类别:
Tumor-Targeted Multimodality Nanoscale Coordination Polymers for Chemo-Immunotherapy of Metastatic Colorectal Cancer
用于转移性结直肠癌化疗免疫治疗的肿瘤靶向多模态纳米配位聚合物
- 批准号:
10639649 - 财政年份:2023
- 资助金额:
$ 11.82万 - 项目类别:
Mucosal immunity to sapovirus in early childhood
幼儿期对沙波病毒的粘膜免疫
- 批准号:
10677051 - 财政年份:2023
- 资助金额:
$ 11.82万 - 项目类别:
Silica Nanocapsule-Mediated Nonviral Delivery of CRISPR Base Editor mRNA and Allele Specific sgRNA for Gene Correction in Leber Congenital Amaurosis
二氧化硅纳米胶囊介导的 CRISPR 碱基编辑器 mRNA 和等位基因特异性 sgRNA 非病毒传递用于 Leber 先天性黑蒙的基因校正
- 批准号:
10668166 - 财政年份:2023
- 资助金额:
$ 11.82万 - 项目类别:
Multimodal Label-Free Nanosensor for Single Virus Characterization and Content Analysis
用于单一病毒表征和内容分析的多模式无标记纳米传感器
- 批准号:
10641529 - 财政年份:2023
- 资助金额:
$ 11.82万 - 项目类别:
Molecular dissection of extrachromosomal DNA formation, development, and evolution
染色体外 DNA 形成、发育和进化的分子解剖
- 批准号:
10640520 - 财政年份:2023
- 资助金额:
$ 11.82万 - 项目类别:
Spatiotemporal visualization of adenylyl cyclase signaling
腺苷酸环化酶信号传导的时空可视化
- 批准号:
10664707 - 财政年份:2023
- 资助金额:
$ 11.82万 - 项目类别:
Optimization of a Self-Adjuvanting Particle System for Delivering Respiratory Syncytial Virus Prefusion Protein
用于输送呼吸道合胞病毒预融合蛋白的自我辅助颗粒系统的优化
- 批准号:
10666079 - 财政年份:2023
- 资助金额:
$ 11.82万 - 项目类别: