Meteorological Applications of a Fully Polarimetric Doppler Radar
全偏振多普勒雷达的气象应用
基本信息
- 批准号:9512685
- 负责人:
- 金额:$ 24.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1996
- 资助国家:美国
- 起止时间:1996-07-01 至 2001-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract/Kostinski The objective of this research is to examine time-series simulations and measurements of hydrometeor backscatter polarization matrices in order to investigate their potential meteorological applications. Previous results show that a deeper understanding of the microphysics is possible by interpreting the polarization scattering matrix as an operator rather than a list of polarimetric variables derived from the associated covariance matrix. In particular, it is now known that the time-series of the polarization matrix eigenvalues and eigenvectors can be used to define meteorologically useful variables related to the shape and canting of the hydrometeors. Our goal then is to further extend this research in order to achieve the clearest possible separation of size, shape, and orientation information. Such knowledge may well have implications with respect to the application of polarization techniques to several practical problems including, for example, the discrimination among hydrometeor types (e.g., rain vs. hail), improved characterization of raindrops for better rainfall estimation.
摘要/Kostinski这项研究的目的是检验水流星后向散射极化矩阵的时间序列模拟和测量,以调查其潜在的气象应用。以前的结果表明,通过将极化散射矩阵解释为算子而不是从相关协方差矩阵推导出的一系列极化变量,可以更深入地理解微物理。特别是,现在已知极化矩阵特征值和特征向量的时间序列可以用来定义与水流星的形状和倾斜有关的气象有用变量。我们的目标是进一步扩展这项研究,以便尽可能清楚地分离大小、形状和方向信息。这些知识很可能对将极化技术应用于几个实际问题产生影响,包括例如区分水流星类型(例如雨和冰雹)、改进雨滴的特性以更好地估计降雨量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Kostinski其他文献
Alexander Kostinski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Kostinski', 18)}}的其他基金
Texture of Stochastic Processes in Physical and Radar Meteorology
物理和雷达气象学中随机过程的结构
- 批准号:
2217182 - 财政年份:2022
- 资助金额:
$ 24.2万 - 项目类别:
Standard Grant
Correlated Random Processes in Physical and Radar Meteorology
物理和雷达气象学中的相关随机过程
- 批准号:
1639868 - 财政年份:2017
- 资助金额:
$ 24.2万 - 项目类别:
Continuing Grant
Stochastic Aspects of Physical and Radar Meteorology
物理和雷达气象学的随机方面
- 批准号:
1119164 - 财政年份:2011
- 资助金额:
$ 24.2万 - 项目类别:
Continuing Grant
Correlated Stochastic Processes in Physical Meteorology
物理气象学中的相关随机过程
- 批准号:
0554670 - 财政年份:2006
- 资助金额:
$ 24.2万 - 项目类别:
Continuing Grant
Correlated Stochastic Processes in Physical Meteorology
物理气象学中的相关随机过程
- 批准号:
0106271 - 财政年份:2001
- 资助金额:
$ 24.2万 - 项目类别:
Continuing Grant
Meteorological Applications of Fully Polarimetric Doppler Radar
全偏振多普勒雷达的气象应用
- 批准号:
9116075 - 财政年份:1992
- 资助金额:
$ 24.2万 - 项目类别:
Continuing Grant
相似国自然基金
Applications of AI in Market Design
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研 究基金项目
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
相似海外基金
FURHY: Fully Recyclable HYbrid bio-composite for transport applications
FURHY:用于运输应用的完全可回收混合生物复合材料
- 批准号:
10065528 - 财政年份:2023
- 资助金额:
$ 24.2万 - 项目类别:
EU-Funded
Fully animal-free manufacture of optimised growth factors: underpinning sustainable and scalable organoid culture for precision medicine, drug discovery and regenerative medicine applications
完全无动物生产优化的生长因子:支持精准医学、药物发现和再生医学应用的可持续和可扩展的类器官培养
- 批准号:
830207 - 财政年份:2021
- 资助金额:
$ 24.2万 - 项目类别:
Innovation Loans
Notpla: the first 100% sustainable, biodegradable and fully customisable wrapping film for industrial applications.”
Notpla:%20%20first%20100%%20可持续,%20可生物降解%20和%20完全%20可定制%20包装%20薄膜%20用于%20工业%20应用。
- 批准号:
105701 - 财政年份:2020
- 资助金额:
$ 24.2万 - 项目类别:
Study
Regularity theory for viscosity solutions of fully nonlinear equations and its applications
全非线性方程粘度解的正则理论及其应用
- 批准号:
20H01817 - 财政年份:2020
- 资助金额:
$ 24.2万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Covid-19 Continuity Grant for Proj 105701 - Notpla: the first 100% sustainable, biodegradable and fully customisable wrapping film for industrial applications
Covid-19%20Continuity%20Grant%20for%20Proj%20105701%20-%20Notpla:%20the%20first%20100%%20可持续,%20可生物降解%20和%20完全%20可定制%20wrapping%20film%20for%20工业%20应用
- 批准号:
74561 - 财政年份:2020
- 资助金额:
$ 24.2万 - 项目类别:
Feasibility Studies
Fully Relativistic Studies of Black Hole Binaries with Applications to Gravitational Wave Observations
黑洞双星的完全相对论研究及其在引力波观测中的应用
- 批准号:
1912632 - 财政年份:2019
- 资助金额:
$ 24.2万 - 项目类别:
Continuing Grant
RAISE-EQuIP: A high-speed, reconfigurable, fully integrated circuit platform for quantum photonic applications
RAISE-EQuIP:用于量子光子应用的高速、可重新配置、全集成电路平台
- 批准号:
1842691 - 财政年份:2018
- 资助金额:
$ 24.2万 - 项目类别:
Standard Grant
Fully Integrated SOI Power Harvester for Autonomous Wireless Sensors for RFID/IoT Applications
适用于 RFID/物联网应用的自主无线传感器的全集成 SOI 功率采集器
- 批准号:
512976-2017 - 财政年份:2017
- 资助金额:
$ 24.2万 - 项目类别:
University Undergraduate Student Research Awards
Vectorial Calculus of Variations in L-infinity, generalised solutions for fully nonlinear PDE systems and applications to Data Assimilation
L-无穷变分的矢量微积分、全非线性偏微分方程系统的广义解及其在数据同化中的应用
- 批准号:
EP/N017412/1 - 财政年份:2016
- 资助金额:
$ 24.2万 - 项目类别:
Research Grant
Fully nonlinear partial differential equations in optimisation and applications
全非线性偏微分方程的优化及应用
- 批准号:
DE140101366 - 财政年份:2014
- 资助金额:
$ 24.2万 - 项目类别:
Discovery Early Career Researcher Award