Texture of Stochastic Processes in Physical and Radar Meteorology

物理和雷达气象学中随机过程的结构

基本信息

  • 批准号:
    2217182
  • 负责人:
  • 金额:
    $ 57.19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

As most people experience on a daily basis, weather quantities such as an unpredictably changing wind speed and direction or rainfall rate, vary a great deal from moment to moment and from one location to another. Atmospheric phenomena often involve such quantities whose distribution of variations (fluctuations) is not known although these fluctuations are typically correlated in time and in space. For example, sensing a few raindrops usually implies that more rain is to follow. Understanding such broadly varying and correlated phenomena is now more important than ever as the warming climate is perceived by public as more variable and weather extremes more severe. For example, is there a trend discernible in this sea of randomness? This project will address this and related questions by developing and applying a method of statistical analysis capable of detecting such weak signals, without making any assumptions about the underlying distributions. That is, the desired approach is agnostic yet parsimonious.Thus, the general goal of this research is to explore the role of correlated and, thereby, intermittent and pronounced fluctuations in cloud and precipitation physics, radar meteorology and radiative transfer. While much research has been devoted to studying probability distributions of such fluctuations, their small-scale spatial and temporal correlations or “texture” have received less attention. Yet, this texture is intertwined with important physical mechanisms such as fragmentation of raindrops causing higher drop concentration via the “birth” of fragments or intermittency and “burstiness” of rainfall. The primary objective of this research is to study such small-scale texture on the basis of a recently discovered rank-based and distribution-independent approach to the absence of texture (identical and independently distributed process or IID). This is of scientific significance because pronounced correlated fluctuations are responsible for rare yet important events such as drop coalescence. The newly developed rank-time method of statistical data analysis is broadly applicable and likely to help with discerning trends in climatological data such as a possible global dimming in time series of satellite-derived optical depth data, available for the last ∼ thirty years. This research is of societal relevance because of potential contributions to better detection range of rainfall with weather radar, resulting in improved flood and landslide prediction. The research is likely to contribute to a broad range of problems, from atmospheric pollution to instrumental noise diagnostics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
正如大多数人每天所经历的那样,天气量,如不可预测的风速和风向或降雨量,每时每刻都有很大的变化,从一个地方到另一个地方。 大气现象通常涉及其变化(波动)分布未知的量,尽管这些波动通常在时间和空间上相关。 例如,感觉到几滴雨滴通常意味着更多的雨将随之而来。 了解这种广泛变化和相关的现象现在比以往任何时候都更加重要,因为公众认为气候变暖更加多变,极端天气更加严重。 例如,在这片随机的海洋中,是否有一种可辨别的趋势?该项目将通过开发和应用一种能够检测这种微弱信号的统计分析方法来解决这一问题和相关问题,而无需对潜在的分布做出任何假设。 因此,本研究的总体目标是探索云和降水物理学、雷达气象学和辐射传输中相关的、间歇性的和明显的波动的作用。虽然许多研究致力于研究这种波动的概率分布,但它们的小尺度空间和时间相关性或“纹理”却很少受到关注。然而,这种纹理与重要的物理机制交织在一起,例如雨滴的碎片化,通过碎片的“诞生”或降雨的不稳定性和“突发性”导致更高的雨滴浓度。本研究的主要目的是研究这种小规模的纹理的基础上,最近发现的基于秩和分布独立的方法,没有纹理(相同和独立分布的过程或IID)。这具有科学意义,因为显著的相关波动是罕见但重要的事件(如液滴聚结)的原因。新开发的统计数据分析的秩-时间方法具有广泛的适用性,可能有助于识别气候数据的趋势,例如过去20 - 30年卫星光学深度数据时间序列中可能出现的全球变暗。 这项研究具有社会意义,因为它可能有助于天气雷达更好地探测降雨范围,从而改善洪水和山体滑坡预测。该研究可能有助于解决从大气污染到仪器噪声诊断等广泛的问题。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Kostinski其他文献

Alexander Kostinski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Kostinski', 18)}}的其他基金

Correlated Random Processes in Physical and Radar Meteorology
物理和雷达气象学中的相关随机过程
  • 批准号:
    1639868
  • 财政年份:
    2017
  • 资助金额:
    $ 57.19万
  • 项目类别:
    Continuing Grant
Stochastic Aspects of Physical and Radar Meteorology
物理和雷达气象学的随机方面
  • 批准号:
    1119164
  • 财政年份:
    2011
  • 资助金额:
    $ 57.19万
  • 项目类别:
    Continuing Grant
Correlated Stochastic Processes in Physical Meteorology
物理气象学中的相关随机过程
  • 批准号:
    0554670
  • 财政年份:
    2006
  • 资助金额:
    $ 57.19万
  • 项目类别:
    Continuing Grant
Correlated Stochastic Processes in Physical Meteorology
物理气象学中的相关随机过程
  • 批准号:
    0106271
  • 财政年份:
    2001
  • 资助金额:
    $ 57.19万
  • 项目类别:
    Continuing Grant
Meteorological Applications of a Fully Polarimetric Doppler Radar
全偏振多普勒雷达的气象应用
  • 批准号:
    9512685
  • 财政年份:
    1996
  • 资助金额:
    $ 57.19万
  • 项目类别:
    Continuing Grant
Meteorological Applications of Fully Polarimetric Doppler Radar
全偏振多普勒雷达的气象应用
  • 批准号:
    9116075
  • 财政年份:
    1992
  • 资助金额:
    $ 57.19万
  • 项目类别:
    Continuing Grant

相似国自然基金

Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于梯度增强Stochastic Co-Kriging的CFD非嵌入式不确定性量化方法研究
  • 批准号:
    11902320
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Large Graph Limits of Stochastic Processes on Random Graphs
随机图上随机过程的大图极限
  • 批准号:
    EP/Y027795/1
  • 财政年份:
    2024
  • 资助金额:
    $ 57.19万
  • 项目类别:
    Research Grant
Stochastic processes in random environments with inhomogeneous scaling limits
具有不均匀缩放限制的随机环境中的随机过程
  • 批准号:
    24K06758
  • 财政年份:
    2024
  • 资助金额:
    $ 57.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Spectral theory of Schrodinger forms and Stochastic analysis for weighted Markov processes
薛定谔形式的谱论和加权马尔可夫过程的随机分析
  • 批准号:
    23K03152
  • 财政年份:
    2023
  • 资助金额:
    $ 57.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Conference: Seminar on Stochastic Processes 2023
会议:随机过程研讨会 2023
  • 批准号:
    2244835
  • 财政年份:
    2023
  • 资助金额:
    $ 57.19万
  • 项目类别:
    Standard Grant
Stochastic processes on random graphs with clustering
具有聚类的随机图上的随机过程
  • 批准号:
    EP/W033585/1
  • 财政年份:
    2023
  • 资助金额:
    $ 57.19万
  • 项目类别:
    Research Grant
Random functions and stochastic processes on random graphs
随机图上的随机函数和随机过程
  • 批准号:
    2246575
  • 财政年份:
    2023
  • 资助金额:
    $ 57.19万
  • 项目类别:
    Standard Grant
Stochastic processes in sub-Riemannian geometry
亚黎曼几何中的随机过程
  • 批准号:
    2246817
  • 财政年份:
    2023
  • 资助金额:
    $ 57.19万
  • 项目类别:
    Standard Grant
Optimal Transport of Stochastic Processes in Mathematical Finance
数学金融中随机过程的最优传输
  • 批准号:
    2345556
  • 财政年份:
    2023
  • 资助金额:
    $ 57.19万
  • 项目类别:
    Continuing Grant
Applications of stochastic analysis to statistical inference for stationary and non-stationary Gaussian processes
随机分析在平稳和非平稳高斯过程统计推断中的应用
  • 批准号:
    2311306
  • 财政年份:
    2023
  • 资助金额:
    $ 57.19万
  • 项目类别:
    Standard Grant
Network Stochastic Processes and Time Series (NeST)
网络随机过程和时间序列 (NeST)
  • 批准号:
    EP/X002195/1
  • 财政年份:
    2022
  • 资助金额:
    $ 57.19万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了