Modeling of Disperse Multiphase Flows

分散多相流的建模

基本信息

  • 批准号:
    9521374
  • 负责人:
  • 金额:
    $ 20.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1996
  • 资助国家:
    美国
  • 起止时间:
    1996-01-01 至 1998-12-31
  • 项目状态:
    已结题

项目摘要

ABSTRACT CTS-9521374 An Engineering description of multi-phase flows by necessity must be made on the basis of macroscopic equations in which the phase inhomogeneties are accounted for in an average sense, rather than in detail. The difficulty in formulating the models resides in the fact that any averaging procedure applied to the fundamental equations of continuum mechanics leads to models containing more unknowns than equations. The fundamental problem is then that of closing the equation set, namely of determining "constitutive relations" that express some unknown quantities in terms of others. This is the central theme of the proposed research for the case of disperse flows, such as particles in a fluid phase. The problem will be attacked by relying on a new method for deriving averaged equations and on the state-of-the-art numerical direct-simulation techniques. Both tools have been previously developed under NSF support. The new averaging procedure expresses the unknown in terms of integrals over the particles surfaces that can readily be calculated from numerical simulations of the motion. The computations will be carried out by means of a space-time finite-element method implemented on massively parallel supercomputers. The insight into the structure of the equations that, if successful, will derive from this research promises to answer long-standing questions as to the mathematical structure of the equations and their relationship to observe phenomena. The enhancement of the numerical techniques necessary to carry out this research constitutes in itself a significant advancement in the current direct numerical simulation capabilities. This research will be carried out in conduction with Professor Tayfun Tezduyar of the University of Minnesota (Twin Cities) who has a separate grant from NSF. ***
多相流的工程描述必须建立在宏观方程的基础上,在宏观方程中,相的不均匀性是一般意义上的,而不是详细的。建立模型的困难在于连续介质力学基本方程的任何平均过程都会导致模型中包含的未知数多于方程。最根本的问题是闭合方程集,即确定用其他未知量表示某些未知量的“本构关系”。这是所提议的分散流动的研究的中心主题,例如流体相中的颗粒。这个问题将依靠一种新的推导平均方程的方法和最先进的数值直接模拟技术来解决。这两个工具之前都是在NSF的支持下开发的。新的平均过程用粒子表面上的积分来表示未知,这些积分可以很容易地从运动的数值模拟中计算出来。计算将通过在大规模并行超级计算机上实现的时空有限元方法进行。如果这项研究取得成功,对方程式结构的洞察将有望回答长期存在的问题,如方程式的数学结构及其与观察现象的关系。开展这项研究所需的数值技术的增强本身就构成了当前直接数值模拟能力的重大进步。这项研究将由明尼苏达大学(双城)的Tayfun Tezduyar教授进行,他获得了美国国家科学基金会的单独资助。***

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrea Prosperetti其他文献

Volume oscillations slow down a rising Taylor bubble
成交量振荡减缓泰勒泡沫的上升
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Guangzhao Zhou;Andrea Prosperetti
  • 通讯作者:
    Andrea Prosperetti
Current topics in the dynamics of gas and vapor bubbles
  • DOI:
    10.1007/bf02128231
  • 发表时间:
    1977-12-01
  • 期刊:
  • 影响因子:
    2.100
  • 作者:
    Andrea Prosperetti
  • 通讯作者:
    Andrea Prosperetti
Viscous forces on acoustically levitated gas bubbles
  • DOI:
    10.1016/j.na.2005.01.047
  • 发表时间:
    2005-11-30
  • 期刊:
  • 影响因子:
  • 作者:
    Darren L. Hitt;Andrea Prosperetti
  • 通讯作者:
    Andrea Prosperetti
Lamb’s solution and the stress moments for a sphere in Stokes flow
  • DOI:
    10.1016/j.euromechflu.2019.09.019
  • 发表时间:
    2020-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Gedi Zhou;Andrea Prosperetti
  • 通讯作者:
    Andrea Prosperetti
Laminar flow past an infinite planar array of fixed particles: point-particle approximation, Oseen equations and resolved simulations
  • DOI:
    10.1007/s10665-020-10052-9
  • 发表时间:
    2020-06-02
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Yuhang Zhang;Yayun Wang;Andrea Prosperetti
  • 通讯作者:
    Andrea Prosperetti

Andrea Prosperetti的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrea Prosperetti', 18)}}的其他基金

Turbulent Particle-Fluid Flows
湍流粒子流体流
  • 批准号:
    1335965
  • 财政年份:
    2013
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Continuing Grant
EAGER: Extended Particles in Turbulent Flow: A Grand Computational Challenge
EAGER:湍流中的扩展粒子:巨大的计算挑战
  • 批准号:
    1258398
  • 财政年份:
    2012
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Standard Grant
A computational tool for particle-fluid flows
颗粒流体流动的计算工具
  • 批准号:
    0754344
  • 财政年份:
    2008
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Continuing Grant
A Multiscale Approach to Disperse Two-phase Flow
分散两相流的多尺度方法
  • 批准号:
    0625138
  • 财政年份:
    2006
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Standard Grant
Finite-size Particles in Homogeneous Turbulence
均匀湍流中的有限尺寸粒子
  • 批准号:
    0210044
  • 财政年份:
    2002
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Continuing Grant
Gas and Vapor Bubbles in Confined Spaces
密闭空间中的气体和蒸汽气泡
  • 批准号:
    9987765
  • 财政年份:
    2000
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Standard Grant
Microscopic and Macroscopic Modelling of Multi-Phase Flows
多相流的微观和宏观建模
  • 批准号:
    8918144
  • 财政年份:
    1990
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Continuing Grant
Bubble Dynamics and Bubbly Liquids
气泡动力学和气泡液体
  • 批准号:
    8607732
  • 财政年份:
    1987
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Continuing Grant

相似海外基金

Solids volume fraction of size-disperse dense granular flows
尺寸分散致密颗粒流的固体体积分数
  • 批准号:
    2905654
  • 财政年份:
    2023
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Studentship
Synthetic process optimisation for production of switchable hydrophilicity disperse dyes
可转换亲水性分散染料生产合成工艺优化
  • 批准号:
    2746495
  • 财政年份:
    2022
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Studentship
CDS&E: Collaborative Research: Fast Numerical Simulations of Low Void Fraction Disperse Multiphase Systems using Event-Triggered Communication
CDS
  • 批准号:
    2225978
  • 财政年份:
    2022
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Standard Grant
CDS&E: Collaborative Research: Fast Numerical Simulations of Low Void Fraction Disperse Multiphase Systems using Event-Triggered Communication
CDS
  • 批准号:
    1953090
  • 财政年份:
    2020
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Standard Grant
CDS&E: Collaborative Research: Fast Numerical Simulations of Low Void Fraction Disperse Multiphase Systems using Event-Triggered Communication
CDS
  • 批准号:
    1953082
  • 财政年份:
    2020
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Standard Grant
Simultaneous, volumetric temperature and velocity field measurements within and around micro-droplets for the analysis and characterization of disperse multiphase flows in microfluidic Lab-on-a-Chip systems
对微液滴内部和周围进行同步体积温度和速度场测量,用于分析和表征微流体芯片实验室系统中的分散多相流
  • 批准号:
    407463169
  • 财政年份:
    2019
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Research Grants
Simulation based modelling of time- and shear-dependent disperse and rheological properties of cement suspensions
基于仿真的水泥悬浮液时间和剪切相关分散和流变特性的建模
  • 批准号:
    387066140
  • 财政年份:
    2017
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Priority Programmes
Identification of poly-disperse granular fabric for the assessment of the stability of widely graded soils under hydraulic load
多分散颗粒织物的识别用于评估水力载荷下宽级配土壤的稳定性
  • 批准号:
    318825689
  • 财政年份:
    2017
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Research Grants
Modelling of the Unsteady Dynamics of Turbulent Disperse Bubbly Flows
湍流分散气泡流的非定常动力学建模
  • 批准号:
    290278641
  • 财政年份:
    2016
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Research Grants
Development of the full Lagrangian approach for the analysis of vortex ring-like structures in disperse media: application to gasoline engines
开发用于分析分散介质中涡环结构的完整拉格朗日方法:在汽油发动机中的应用
  • 批准号:
    EP/K005758/1
  • 财政年份:
    2013
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了