A Multiscale Approach to Disperse Two-phase Flow

分散两相流的多尺度方法

基本信息

  • 批准号:
    0625138
  • 负责人:
  • 金额:
    $ 24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-09-01 至 2010-08-31
  • 项目状态:
    已结题

项目摘要

ABSTRACTProposal Number: 0625138Principal Investigator: Prosperetti, AndreiAffiliation: Johns Hopkins UniversityProposal Title: A multi-scale approach to disperse two-phase flowIntellectual Merit:This work is the first application of multiscale computing to a disperse multiphase flow problem. Its objectives are to develop methods to couple detailed local numerical solutions of fluid flow with suspended particles to a coarse-grained description based on averaged equations. The specific objective is to study the effect of the bounding solid walls on a disperse fluid particle flow. While much progress has been made in the treatment of such flows by means of averaged equations, the proper boundary conditions to be imposed on the solution of these equations are not well established. In order to address this problem, it is proposed to conduct a multiscale simulation in which the wall region will be treated by direct numerical simulation accurately solving the Navier-Stokes equations with suspended finite-sized particles. This detailed model will be coupled to an averaged-equations model describing the flow in the regions away from the walls. Beyond the specific results for the boundary conditions problem, it is expected that an accurate and efficient solution of the many issues that arise in the coupling of the two descriptions will open the way to other applications of multiscale computing to multiphase flow. Computational limitations have forced the vast majority of previous simulations to be conducted by approximating the particles as mass points in conditions of exceedingly small particle concentration. There are many very important situations which cannot be studied by these means: particles suspended in a liquid, non-dilute systems and many others. The algorithm to be used here is capable of taking full account of the finite extent of the particles and to simulate dense systems.Broader Impacts:Multiphase flow is a very vital area of contemporary research. There are compelling scientific reasons for the interest in this research: the statistical treatment of problems of this type is as necessary as it is challenging; a large fraction of the entire discipline of Fluid Mechanics is relevant; and fundamental processes, such as clustering and diffusion are incompletely understood. The successful development of multiscale computational techniques will have a significant impact on the progress of the discipline. Young researchers trained in this field will be able to join a vibrant scientific community addressing significant research objectives.
摘要提案编号:0625138主要研究者:Prosperetti,Andrei单位:约翰霍普金斯大学提案标题:分散两相流的多尺度方法知识点:这项工作是多尺度计算在分散多相流问题中的首次应用。它的目标是开发方法耦合详细的局部数值解的流体流动与悬浮颗粒的粗粒度的描述平均方程的基础上。具体目标是研究边界固体壁对分散流体颗粒流的影响。虽然在用平均方程处理这种流动方面已经取得了很大的进展,但对这些方程的解所施加的适当边界条件还没有很好地确定。为了解决这个问题,建议进行多尺度模拟,其中壁区域将被处理的直接数值模拟精确地求解Navier-Stokes方程与悬浮的有限尺寸的颗粒。这个详细的模型将被耦合到一个平均方程模型描述的区域远离墙壁的流动。除了边界条件问题的具体结果之外,预计在两种描述的耦合中出现的许多问题的准确和有效的解决方案将为多尺度计算在多相流中的其他应用开辟道路。 计算的限制迫使绝大多数以前的模拟进行近似的粒子作为质量点的条件下,非常小的粒子浓度。有许多非常重要的情况是不能用这些方法研究的:悬浮在液体中的颗粒,非稀释系统和许多其他情况。 这里使用的算法能够充分考虑颗粒的有限范围,并模拟稠密系统。更广泛的影响:多相流是当代研究的一个非常重要的领域。有令人信服的科学理由对这项研究的兴趣:这种类型的问题的统计处理是必要的,因为它是具有挑战性的;整个流体力学学科的很大一部分是相关的;基本过程,如聚类和扩散不完全理解。多尺度计算技术的成功发展将对该学科的发展产生重大影响。在这一领域受过培训的年轻研究人员将能够加入一个充满活力的科学界,实现重大的研究目标。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrea Prosperetti其他文献

Volume oscillations slow down a rising Taylor bubble
成交量振荡减缓泰勒泡沫的上升
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Guangzhao Zhou;Andrea Prosperetti
  • 通讯作者:
    Andrea Prosperetti
Current topics in the dynamics of gas and vapor bubbles
  • DOI:
    10.1007/bf02128231
  • 发表时间:
    1977-12-01
  • 期刊:
  • 影响因子:
    2.100
  • 作者:
    Andrea Prosperetti
  • 通讯作者:
    Andrea Prosperetti
Viscous forces on acoustically levitated gas bubbles
  • DOI:
    10.1016/j.na.2005.01.047
  • 发表时间:
    2005-11-30
  • 期刊:
  • 影响因子:
  • 作者:
    Darren L. Hitt;Andrea Prosperetti
  • 通讯作者:
    Andrea Prosperetti
Lamb’s solution and the stress moments for a sphere in Stokes flow
  • DOI:
    10.1016/j.euromechflu.2019.09.019
  • 发表时间:
    2020-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Gedi Zhou;Andrea Prosperetti
  • 通讯作者:
    Andrea Prosperetti
Laminar flow past an infinite planar array of fixed particles: point-particle approximation, Oseen equations and resolved simulations
  • DOI:
    10.1007/s10665-020-10052-9
  • 发表时间:
    2020-06-02
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Yuhang Zhang;Yayun Wang;Andrea Prosperetti
  • 通讯作者:
    Andrea Prosperetti

Andrea Prosperetti的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrea Prosperetti', 18)}}的其他基金

Turbulent Particle-Fluid Flows
湍流粒子流体流
  • 批准号:
    1335965
  • 财政年份:
    2013
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
EAGER: Extended Particles in Turbulent Flow: A Grand Computational Challenge
EAGER:湍流中的扩展粒子:巨大的计算挑战
  • 批准号:
    1258398
  • 财政年份:
    2012
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
A computational tool for particle-fluid flows
颗粒流体流动的计算工具
  • 批准号:
    0754344
  • 财政年份:
    2008
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Finite-size Particles in Homogeneous Turbulence
均匀湍流中的有限尺寸粒子
  • 批准号:
    0210044
  • 财政年份:
    2002
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Gas and Vapor Bubbles in Confined Spaces
密闭空间中的气体和蒸汽气泡
  • 批准号:
    9987765
  • 财政年份:
    2000
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Modeling of Disperse Multiphase Flows
分散多相流的建模
  • 批准号:
    9521374
  • 财政年份:
    1996
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Microscopic and Macroscopic Modelling of Multi-Phase Flows
多相流的微观和宏观建模
  • 批准号:
    8918144
  • 财政年份:
    1990
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Bubble Dynamics and Bubbly Liquids
气泡动力学和气泡液体
  • 批准号:
    8607732
  • 财政年份:
    1987
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant

相似国自然基金

EnSite array指导下对Stepwise approach无效的慢性房颤机制及消融径线设计的实验研究
  • 批准号:
    81070152
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    面上项目

相似海外基金

Understanding The Political Representation of Men: A Novel Approach to Making Politics More Inclusive
了解男性的政治代表性:使政治更具包容性的新方法
  • 批准号:
    EP/Z000246/1
  • 财政年份:
    2025
  • 资助金额:
    $ 24万
  • 项目类别:
    Research Grant
CAREER: Real-Time First-Principles Approach to Understanding Many-Body Effects on High Harmonic Generation in Solids
职业:实时第一性原理方法来理解固体高次谐波产生的多体效应
  • 批准号:
    2337987
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
  • 批准号:
    2338749
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
SWIFT-SAT: Unlimited Radio Interferometry: A Hardware-Algorithm Co-Design Approach to RAS-Satellite Coexistence
SWIFT-SAT:无限无线电干涉测量:RAS 卫星共存的硬件算法协同设计方法
  • 批准号:
    2332534
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
  • 批准号:
    2316612
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
  • 批准号:
    2316615
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Postdoctoral Fellowship: EAR-PF: Establishing a new eruption classification with a multimethod approach
博士后奖学金:EAR-PF:用多种方法建立新的喷发分类
  • 批准号:
    2305462
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Fellowship Award
「生きづらさ」を抱える妊産婦に対するnon-stigmatizing approachの開発
为正在经历“生活困难”的孕妇制定一种非侮辱性的方法
  • 批准号:
    24K14025
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Structure-Focused Multi-task Learning Approach for structural pattern recognition and analysis
用于结构模式识别和分析的以结构为中心的多任务学习方法
  • 批准号:
    24K20789
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
A mobile health solution in combination with behavioral change approach to improve vaccination coverage and timeliness in Bangladesh: A cluster randomized control trial
移动健康解决方案与行为改变方法相结合,以提高孟加拉国的疫苗接种覆盖率和及时性:集群随机对照试验
  • 批准号:
    24K20168
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了