Computational Techniques for Mapping Design Features to Machining Features: Machining Algebra and Dimensioning and Tolerancing Mapping

将设计特征映射到加工特征的计算技术:加工代数以及尺寸和公差映射

基本信息

  • 批准号:
    9522971
  • 负责人:
  • 金额:
    $ 25.15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1995
  • 资助国家:
    美国
  • 起止时间:
    1995-10-01 至 1999-03-31
  • 项目状态:
    已结题

项目摘要

9522971 Shah This project investigates several computational techniques for transferring product geometry data from design to manufacturing without human intervention. The project is divided into two parts. The first component of the project is the development of machining algebra for geometric representation of tool-workpiece interaction for all machining processes. This provides the mathematical basis for determining the machining process that produces each machining feature on a given part. The second component of the project is a computational model for mapping dimensions and tolerances (D&T) while preserving the design intent. The key elements of the model are geometric building blocks, directed geometric constraints, and degree of freedom analysis for validation. Methods for redistributing the designers D&T between machining features will also be developed. This project addresses a critical area of industry need, viz., design and manufacturing integration. The lack of this integration results in longer development times because manufacturing planning today is a very labor-intensive activity. The machining algebra has the potential to capture the fundamental characteristics of common machining processes, replacing shallow heuristic rules used now, enhancing the degree to which manufacturing can be automated. The methods proposed are generic; they are independent of particular computer aided design (CAD) or computer aided process planning (CAPP) systems used. Each of the computational methods can be used independent of each other, making it attractive to incorporate them into existing CAD/CAPP systems. This will enhance the communication between design and manufacturing and enhance process planning productivity, thus reducing time to market.
9522971沙阿这个项目研究了几种计算技术,用于将产品几何数据从设计转移到制造,而不需要人工干预。该项目分为两个部分。该项目的第一个组成部分是开发用于所有加工过程的刀具-工件相互作用的几何表示的加工代数。这为确定在给定零件上产生每个加工特征的加工工艺提供了数学基础。该项目的第二个组成部分是一个计算模型,用于在保持设计意图的同时映射尺寸和公差(D&A;T)。该模型的关键元素是几何构件、有向几何约束和用于验证的自由度分析。还将开发在加工特征之间重新分配设计者D&A;T的方法。该项目解决了工业需求的一个关键领域,即设计和制造集成。缺乏这种集成会导致开发时间更长,因为今天的制造计划是一项非常劳动密集型的活动。加工代数有可能捕捉普通加工过程的基本特征,取代目前使用的浅显的启发式规则,提高制造的自动化程度。所提出的方法是通用的;它们独立于所使用的特定计算机辅助设计(CAD)或计算机辅助工艺设计(CAPP)系统。每种计算方法都可以相互独立地使用,因此将它们整合到现有的CAD/CAPP系统中是很有吸引力的。这将加强设计和制造之间的沟通,提高工艺规划生产率,从而缩短上市时间。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jami Shah其他文献

Springback prediction using machine learning: an application for simplified automotive body-in-white structures

Jami Shah的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jami Shah', 18)}}的其他基金

GOALI/Collaborative Research: Curating Complex Data Sets for Machine Learning Applied to Flexible Assembly Design and Optimization
GOALI/协作研究:为应用于灵活装配设计和优化的机器学习管理复杂的数据集
  • 批准号:
    2029905
  • 财政年份:
    2021
  • 资助金额:
    $ 25.15万
  • 项目类别:
    Standard Grant
EAGER: MyDesignSpace: Discovering Design Patterns from Holistic Ideation Web Tool
EAGER:MyDesignSpace:从整体构思网络工具中发现设计模式
  • 批准号:
    1150271
  • 财政年份:
    2011
  • 资助金额:
    $ 25.15万
  • 项目类别:
    Standard Grant
Major: Understanding and Aiding Problem Formulation in Creative Conceptual Design
专业:理解和帮助创意概念设计中的问题表述
  • 批准号:
    1002910
  • 财政年份:
    2010
  • 资助金额:
    $ 25.15万
  • 项目类别:
    Standard Grant
EAGER: Holistic Ideation for Creative Design
EAGER:创意设计的整体构思
  • 批准号:
    1045644
  • 财政年份:
    2010
  • 资助金额:
    $ 25.15万
  • 项目类别:
    Standard Grant
Identification, Characterization & Measurement of Design Skills and Designer Profiles
鉴定、表征
  • 批准号:
    0728192
  • 财政年份:
    2007
  • 资助金额:
    $ 25.15万
  • 项目类别:
    Standard Grant
Engineering Design in 2030: A Strategic Planning Workshop; March 26-29, 2004; Arizona
2030 年的工程设计:战略规划研讨会;
  • 批准号:
    0411591
  • 财政年份:
    2004
  • 资助金额:
    $ 25.15万
  • 项目类别:
    Standard Grant
2005 NSF Design, Service and Manufacturing Grantees and Research Conference; Scottsdale, Arizona, January 3-6, 2005
2005年NSF设计、服务和制造受资助者及研究会议;
  • 批准号:
    0407596
  • 财政年份:
    2003
  • 资助金额:
    $ 25.15万
  • 项目类别:
    Standard Grant
Development and Validation of Design Ideation Models for Conceptual Engineering Design
概念工程设计的设计构思模型的开发和验证
  • 批准号:
    0115447
  • 财政年份:
    2001
  • 资助金额:
    $ 25.15万
  • 项目类别:
    Continuing Grant
Investigation of Design for Manufacturing (DfM) Metrics and Methods
制造设计 (DfM) 指标和方法的研究
  • 批准号:
    0070128
  • 财政年份:
    2000
  • 资助金额:
    $ 25.15万
  • 项目类别:
    Continuing Grant
Unified Theory of Topological and Geometric Problems in Mechanical Design and Manufacturing
机械设计与制造中拓扑与几何问题的统一理论
  • 批准号:
    9812977
  • 财政年份:
    1998
  • 资助金额:
    $ 25.15万
  • 项目类别:
    Standard Grant

相似国自然基金

EstimatingLarge Demand Systems with MachineLearning Techniques
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金

相似海外基金

Development of advanced magnetic resonance spectroscopic imaging techniques for rapid high-resolution mapping of brain metabolite levels
开发先进的磁共振波谱成像技术,用于大脑代谢水平的快速高分辨率绘图
  • 批准号:
    RGPIN-2020-05917
  • 财政年份:
    2022
  • 资助金额:
    $ 25.15万
  • 项目类别:
    Discovery Grants Program - Individual
Development of advanced magnetic resonance spectroscopic imaging techniques for rapid high-resolution mapping of brain metabolite levels
开发先进的磁共振波谱成像技术,用于大脑代谢水平的快速高分辨率绘图
  • 批准号:
    RGPIN-2020-05917
  • 财政年份:
    2021
  • 资助金额:
    $ 25.15万
  • 项目类别:
    Discovery Grants Program - Individual
EAGER: Development of Techniques for 3D mapping at Macroscopic Scales
EAGER:宏观尺度 3D 测绘技术的开发
  • 批准号:
    2049603
  • 财政年份:
    2021
  • 资助金额:
    $ 25.15万
  • 项目类别:
    Standard Grant
Development of advanced magnetic resonance spectroscopic imaging techniques for rapid high-resolution mapping of brain metabolite levels
开发先进的磁共振波谱成像技术,用于大脑代谢水平的快速高分辨率绘图
  • 批准号:
    RGPIN-2020-05917
  • 财政年份:
    2021
  • 资助金额:
    $ 25.15万
  • 项目类别:
    Discovery Grants Program - Individual
Development of advanced magnetic resonance spectroscopic imaging techniques for rapid high-resolution mapping of brain metabolite levels
开发先进的磁共振波谱成像技术,用于大脑代谢水平的快速高分辨率绘图
  • 批准号:
    RGPIN-2020-05917
  • 财政年份:
    2020
  • 资助金额:
    $ 25.15万
  • 项目类别:
    Discovery Grants Program - Individual
Applying data-mining techniques on long-wave infrared unmanned aerial imagery for thermal mapping and crop water stress quantification
将数据挖掘技术应用于长波红外无人机图像,用于热测图和作物水分胁迫量化
  • 批准号:
    554152-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 25.15万
  • 项目类别:
    Applied Research and Development Grants - Level 1
New registration techniques to improve mobile lidar mapping accuracy
新的配准技术可提高移动激光雷达测绘精度
  • 批准号:
    505367-2016
  • 财政年份:
    2020
  • 资助金额:
    $ 25.15万
  • 项目类别:
    Collaborative Research and Development Grants
Collaborative Research: CDS&E: New Image Resampling Techniques for the Mapping Nearby Galaxies at Apache Point Observatory survey in the NASA Sloan Atlas
合作研究:CDS
  • 批准号:
    1909485
  • 财政年份:
    2019
  • 资助金额:
    $ 25.15万
  • 项目类别:
    Standard Grant
New registration techniques to improve mobile lidar mapping accuracy
新的配准技术可提高移动激光雷达测绘精度
  • 批准号:
    505367-2016
  • 财政年份:
    2019
  • 资助金额:
    $ 25.15万
  • 项目类别:
    Collaborative Research and Development Grants
Collaborative Research: CDS&E: New Image Resampling Techniques for the Mapping Nearby Galaxies at Apache Point Observatory in the NASA Sloan Atlas
合作研究:CDS
  • 批准号:
    1909374
  • 财政年份:
    2019
  • 资助金额:
    $ 25.15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了