An Integrated Machine Vision Based System for Solving the Cutting Stock Problem in the Leather Industry

基于集成机器视觉的系统可解决皮革行业的裁料问题

基本信息

  • 批准号:
    9523123
  • 负责人:
  • 金额:
    $ 11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1996
  • 资助国家:
    美国
  • 起止时间:
    1996-01-01 至 1997-12-31
  • 项目状态:
    已结题

项目摘要

9523123 Anand This research addresses the problem of using an integrated machine vision system in the optimization of the cut and minimization of the scrap losses in the leather industry. This is a cutting stock problem in which machine vision technology is applied to optimize the cuts and minimize scrap. The operation involves cutting smaller irregular leather pieces from a larger piece in the shoe industry. Based on input from shop schedule and the prices of leather parts, a systems approach is applied for planning the cutting operations. The machine vision is used in acquiring the image of the leather pieces and the shoe parts for which the leather pieces are to be attached, polygonizing them, and storing the polygonized images in separate image databases. Using the polygonal images of the leather pieces, the shoe parts, and the manufacturing priorities as input, algorithms are developed for solving the irregular shape cutting stock problem from irregular sheets. The layout information for each leather piece is stored in a layout database and communicated to the cutting operator as a graphic display on a terminal. Alternatively, the layout information is converted to a numerical control (NC) code and fed to a computer numerical control (CNC) controller for automated cutting (laser or waterjet cutting of leather). The general cutting stock problem has applications in a number of industries, including construction, sheet metal, apparel, textile, and glass. Most of the parts in these industries are irregular in shape. Therefore, any methodology or algorithm that improves the utilization of raw materials in these industries can substantially reduce scrap losses and make them more competitive. This project is focused at developing such a tool. The outcome of this research will also help automate some of the critical operations in these industries and thus, reduce overdependency on human labor and experience.
小行星9523123 本研究解决了在皮革工业中使用集成机器视觉系统优化切割和最小化废料损失的问题。这是一个下料问题,其中机器视觉技术被应用于优化切割和最小化废料。在制鞋业中,这种操作涉及从较大的皮革上切割出较小的不规则皮革。基于输入的车间调度和皮革零件的价格,一个系统的方法来规划切割操作。机器视觉用于获取皮革件和皮革件将被附接至其的鞋部件的图像,对它们进行识别,并将识别的图像存储在单独的图像数据库中。利用皮革片、鞋部件的多边形图像和制造优先级作为输入,开发了用于解决从不规则片材上切割不规则形状下料问题的算法。每个皮革片的布局信息存储在布局数据库中,并作为终端上的图形显示传送给切割操作员。或者,将布局信息转换成数控(NC)代码并馈送到计算机数控(CNC)控制器以用于自动切割(皮革的激光或水射流切割)。 一般的下料问题在许多行业都有应用,包括建筑、钣金、服装、纺织和玻璃。这些行业中的大多数零件形状不规则。因此,任何提高这些行业原材料利用率的方法或算法都可以大幅减少废料损失,使其更具竞争力。该项目的重点是开发这样一个工具。这项研究的成果还将有助于这些行业中的一些关键操作实现自动化,从而减少对人力和经验的过度依赖。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sundararaman Anand其他文献

Sundararaman Anand的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sundararaman Anand', 18)}}的其他基金

SGER: An Integrated Approach to Prediction, Assessment and Inspection of Form Errors in Machined Parts
SGER:预测、评估和检查机加工零件形状误差的综合方法
  • 批准号:
    0231790
  • 财政年份:
    2002
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant
A Hough Transform Based Approach for Accurate Evaluation of Geometric Tolerances
基于霍夫变换的几何公差精确评估方法
  • 批准号:
    9523120
  • 财政年份:
    1996
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

N2Vision+: A robot-enabled, data-driven machine vision tool for nitrogen diagnosis of arable soils
N2Vision:一种由机器人驱动、数据驱动的机器视觉工具,用于耕地土壤的氮诊断
  • 批准号:
    10091423
  • 财政年份:
    2024
  • 资助金额:
    $ 11万
  • 项目类别:
    Collaborative R&D
Learning to create Intelligent Solutions with Machine Learning and Computer Vision: A Pathway to AI Careers for Diverse High School Students
学习利用机器学习和计算机视觉创建智能解决方案:多元化高中生的人工智能职业之路
  • 批准号:
    2342574
  • 财政年份:
    2024
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant
Collaborative Research:CIF:Small:Acoustic-Optic Vision - Combining Ultrasonic Sonars with Visible Sensors for Robust Machine Perception
合作研究:CIF:Small:声光视觉 - 将超声波声纳与可见传感器相结合,实现强大的机器感知
  • 批准号:
    2326905
  • 财政年份:
    2024
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant
Collaborative Research:CIF:Small: Acoustic-Optic Vision - Combining Ultrasonic Sonars with Visible Sensors for Robust Machine Perception
合作研究:CIF:Small:声光视觉 - 将超声波声纳与可见传感器相结合,实现强大的机器感知
  • 批准号:
    2326904
  • 财政年份:
    2024
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant
Evolving Telecoms scope 3 decarbonisation: an open-access emissions datasource powered by Vision Machine Learning
不断发展的电信范围 3 脱碳:由视觉机器学习提供支持的开放获取排放数据源
  • 批准号:
    10111834
  • 财政年份:
    2024
  • 资助金额:
    $ 11万
  • 项目类别:
    Collaborative R&D
Collaborative Research: FuSe: Metaoptics-Enhanced Vertical Integration for Versatile In-Sensor Machine Vision
合作研究:FuSe:Metaoptics 增强型垂直集成,实现多功能传感器内机器视觉
  • 批准号:
    2416375
  • 财政年份:
    2023
  • 资助金额:
    $ 11万
  • 项目类别:
    Continuing Grant
Pig ID: developing a deep learning machine vision system to track pigs using individual biometrics
Pig ID:开发深度学习机器视觉系统,利用个体生物识别技术跟踪猪
  • 批准号:
    BB/X001385/1
  • 财政年份:
    2023
  • 资助金额:
    $ 11万
  • 项目类别:
    Research Grant
Pig ID: developing a deep learning machine vision system to track pigs using individual biometrics
Pig ID:开发深度学习机器视觉系统,利用个体生物识别技术跟踪猪
  • 批准号:
    BB/X001830/1
  • 财政年份:
    2023
  • 资助金额:
    $ 11万
  • 项目类别:
    Research Grant
Collaborative Research: FuSe: Metaoptics-Enhanced Vertical Integration for Versatile In-Sensor Machine Vision
合作研究:FuSe:Metaoptics 增强型垂直集成,实现多功能传感器内机器视觉
  • 批准号:
    2328855
  • 财政年份:
    2023
  • 资助金额:
    $ 11万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: Metaoptics-Enhanced Vertical Integration for Versatile In-Sensor Machine Vision
合作研究:FuSe:Metaoptics 增强型垂直集成,实现多功能传感器内机器视觉
  • 批准号:
    2328856
  • 财政年份:
    2023
  • 资助金额:
    $ 11万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了