Collaborative Research: FuSe: Metaoptics-Enhanced Vertical Integration for Versatile In-Sensor Machine Vision
合作研究:FuSe:Metaoptics 增强型垂直集成,实现多功能传感器内机器视觉
基本信息
- 批准号:2328856
- 负责人:
- 金额:$ 49.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Vision is perhaps the most important human perception, as the majority of the brain’s cognitive function is dedicated to processing visual information. Despite recent advancements, today’s vision sensors remain quite primitive when compared to the superior ability of human visual perception. Moreover, the rapid development of deep learning and artificial intelligence (AI) has unleashed a new wave of machine vision, where increasing amounts of image data are generated and consumed, not by humans, but by edge devices to perform intelligent tasks such as classification, recognition, and perception. Inspired by the biological system and motivated by the huge demand of machine vision, this project investigates an integrated and holistic approach to building versatile vision systems that can be tailored for domain-specific tasks. It aims to create a vertically-integrated design stack for vision sensors across optics, image sensors, and vision processors. The project is expected to herald a new paradigm of AI-driven vision systems and demonstrate technology to address pivotal engineering challenges from real-time visual adaptivity in self-driving cars to near-zero energy efficiency in persistent environmental monitoring. In addition, the project’s education and workforce development activities foster an open-source hardware community to boost accessibility and deepen collaboration beyond the traditional discipline divides, as well as to build up the capacity of domestic talents in vision sensor industry, critical to national security and supply chain safety. The research objective of this project is to create the scientific and engineering foundations for a novel machine vision system that explores the hybrid integration of nanophotonic metamaterials and complementary metal-oxide semiconductor (CMOS) circuits and synergistically leverages the intrinsic computing capability of computational metasurface and analog-domain encoder embedded inside the image sensors. Our principled approach to abstracting design knobs and modeling interactions and tradeoffs across the system layers and physical domains will inform future “More than Moore” multi-physics semiconductor device integration. We will delve into the key concept of optimally distributing computation along the processing pipeline with complementary intrinsic physical-domain operations. Our end-to-end design framework is deliberately created to bridge the divide between modeling/simulation infrastructure and design toolchains across multiple heterogeneous physical domains. The core principles of embedding machine-learning-enabled feature selection with optical/electrical vertical integration could have a major impact on the design of sensor-rich intelligent physical platforms where resource constraints coincide with strict latency requirements. The technology developed in this project will turbocharge AI-enabled hardware to satisfy the tremendous computational demand imposed by data proliferation, broadly benefiting a range of burgeoning industries such as machine vision as a service, smart IoT infrastructure, data-driven sensing and imaging.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
视觉可能是人类最重要的感知,因为大脑的大部分认知功能都致力于处理视觉信息。尽管最近取得了进步,但与人类视觉感知的卓越能力相比,今天的视觉传感器仍然很原始。此外,深度学习和人工智能(AI)的快速发展引发了机器视觉的新浪潮,其中越来越多的图像数据不是由人类生成和消费,而是由边缘设备生成和消费,以执行分类、识别和感知等智能任务。受生物系统的启发和机器视觉的巨大需求的推动,该项目研究了一种集成和整体的方法来构建多功能视觉系统,可以为特定领域的任务量身定制。它旨在为视觉传感器、图像传感器和视觉处理器创建一个垂直集成的设计堆栈。该项目有望引领人工智能驱动的视觉系统的新范式,并展示解决关键工程挑战的技术,从自动驾驶汽车的实时视觉适应性到持续环境监测的近零能源效率。此外,该项目的教育和劳动力发展活动培育了一个开源硬件社区,以提高可访问性,深化超越传统学科鸿沟的合作,并建立国内视觉传感器行业人才的能力,这对国家安全和供应链安全至关重要。该项目的研究目标是为一种新型机器视觉系统创造科学和工程基础,该系统探索纳米光子超材料和互补金属氧化物半导体(CMOS)电路的混合集成,并协同利用嵌入图像传感器内的计算超表面和模拟域编码器的固有计算能力。我们抽象设计按钮的原则方法,以及跨系统层和物理域的交互和权衡建模,将为未来的“超越摩尔”多物理场半导体器件集成提供信息。我们将深入研究沿着具有互补内在物理域操作的处理管道最佳分布计算的关键概念。我们的端到端设计框架旨在跨越多个异构物理领域,弥合建模/仿真基础设施和设计工具链之间的鸿沟。将支持机器学习的特征选择与光学/电气垂直集成相结合的核心原则可能会对富含传感器的智能物理平台的设计产生重大影响,这些平台的资源限制与严格的延迟要求相吻合。该项目开发的技术将增强支持人工智能的硬件,以满足数据激增带来的巨大计算需求,广泛受益于一系列新兴行业,如机器视觉即服务、智能物联网基础设施、数据驱动的传感和成像。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuhao Zhu其他文献
The Role of the CPU in Energy-Efficient Mobile Web Browsing
CPU 在节能移动网络浏览中的作用
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:3.6
- 作者:
Yuhao Zhu;Matthew Halpern;V. Reddi - 通讯作者:
V. Reddi
Managerial sentiment and employment
- DOI:
10.1016/j.jbef.2024.100961 - 发表时间:
2024-09-01 - 期刊:
- 影响因子:
- 作者:
Maurizio Montone;Yuhao Zhu;Remco C.J. Zwinkels - 通讯作者:
Remco C.J. Zwinkels
Multi-cycle charging information guided state of health estimation for lithium-ion batteries based on pre-trained large language model
- DOI:
10.1016/j.energy.2024.133993 - 发表时间:
2024-12-30 - 期刊:
- 影响因子:
- 作者:
Zhen Zhang;Yuhao Zhu;Qi Zhang;Naxin Cui;Yunlong Shang - 通讯作者:
Yunlong Shang
Biallelic Variants in emLanosterol Synthase/em (emLSS/em) Cause Palmoplantar Keratoderma-Congenital Alopecia Syndrome Type 2
羊毛甾醇合酶(emLSS)双等位基因变异导致 2 型掌跖角化症-先天性脱发综合征
- DOI:
10.1016/j.jid.2022.03.023 - 发表时间:
2022-10-01 - 期刊:
- 影响因子:5.700
- 作者:
Fang Yang;Xingyuan Jiang;Yuhao Zhu;Mingyang Lee;Zhengren Xu;Jianglin Zhang;Qian Li;Mao-ying Lin;Huijun Wang;Zhimiao Lin - 通讯作者:
Zhimiao Lin
Stress state of steel plate shear walls under compression-shear combination load
压剪组合荷载作用下钢板剪力墙的应力状态
- DOI:
10.1002/tal.1450 - 发表时间:
2018 - 期刊:
- 影响因子:2.4
- 作者:
Yang Lv;Di Wu;Yuhao Zhu;Xiao Liang;Yanchao Shi;Zhen Yang;Zhong-Xian Li - 通讯作者:
Zhong-Xian Li
Yuhao Zhu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuhao Zhu', 18)}}的其他基金
Collaborative Research: CNS Core: HCC: Small: Enabling Efficient Computer Systems for Augmented and Virtual Reality: A Perception-Guided Approach
合作研究:CNS 核心:HCC:小型:为增强现实和虚拟现实启用高效计算机系统:感知引导方法
- 批准号:
2225860 - 财政年份:2022
- 资助金额:
$ 49.95万 - 项目类别:
Standard Grant
CAREER: Systems and Architectural Support for Accelerator-Level Parallelism
职业:加速器级并行的系统和架构支持
- 批准号:
2044963 - 财政年份:2021
- 资助金额:
$ 49.95万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Small: Enabling Efficient 3D Perception: An Architecture-Algorithm Co-Design Approach
协作研究:SHF:小型:实现高效的 3D 感知:架构-算法协同设计方法
- 批准号:
2126642 - 财政年份:2021
- 资助金额:
$ 49.95万 - 项目类别:
Standard Grant
AF: Small: Collaborative Research: Personalized Environmental Monitoring of Type 1 Diabetes (T1D): A Dynamic System Perspective
AF:小型:合作研究:1 型糖尿病 (T1D) 的个性化环境监测:动态系统视角
- 批准号:
1714136 - 财政年份:2017
- 资助金额:
$ 49.95万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 49.95万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 49.95万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 49.95万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 49.95万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: Metaoptics-Enhanced Vertical Integration for Versatile In-Sensor Machine Vision
合作研究:FuSe:Metaoptics 增强型垂直集成,实现多功能传感器内机器视觉
- 批准号:
2416375 - 财政年份:2023
- 资助金额:
$ 49.95万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: Indium selenides based back end of line neuromorphic accelerators
合作研究:FuSe:基于硒化铟的后端神经形态加速器
- 批准号:
2328741 - 财政年份:2023
- 资助金额:
$ 49.95万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: Interconnects with Co-Designed Materials, Topology, and Wire Architecture
合作研究:FuSe:与共同设计的材料、拓扑和线路架构互连
- 批准号:
2328906 - 财政年份:2023
- 资助金额:
$ 49.95万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: Interconnects with Co-Designed Materials, Topology, and Wire Architecture
合作研究:FuSe:与共同设计的材料、拓扑和线路架构互连
- 批准号:
2328908 - 财政年份:2023
- 资助金额:
$ 49.95万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: Collaborative Optically Disaggregated Arrays of Extreme-MIMO Radio Units (CODAeMIMO)
合作研究:FuSe:Extreme-MIMO 无线电单元的协作光学分解阵列 (CODAeMIMO)
- 批准号:
2328947 - 财政年份:2023
- 资助金额:
$ 49.95万 - 项目类别:
Continuing Grant
FuSe/Collaborative Research: Heterogeneous Integration in Power Electronics for High-Performance Computing (HIPE-HPC)
FuSe/合作研究:用于高性能计算的电力电子异构集成 (HIPE-HPC)
- 批准号:
2329063 - 财政年份:2023
- 资助金额:
$ 49.95万 - 项目类别:
Continuing Grant