MDC: A High-Performance Problem-Solving Environment for Optimization and Control of Chemical and Biological Processes
MDC:用于优化和控制化学和生物过程的高性能问题解决环境
基本信息
- 批准号:9527151
- 负责人:
- 金额:$ 165万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1995
- 资助国家:美国
- 起止时间:1995-10-01 至 1998-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The primary goal of this research is the development of high-performance problem solving environment (PSE) for the optimization and control of chemical and biological processes, with initial emphasis on bioengineering applications. The optimization and control of such processes requires the repetitive solution of time-dependent partial equations (PDEs) in two or three spatial dimensions. The requirements of this problem, which must be solved interactively, can only be met by the use of massively parallel computers. Such a comprehensive and powerful PSE does not currently exist, and its development presents significant computational and computer science challenges. The initial application is the design and optimization of a small diameter bioartificial artery. Over 600,000 surgical procedures for blood vessel replacement are conducted in the U.S. annually, many involving synthetic polymer substitutes for small diameter blood vessels that fail due to lack of biocompatability, which is not an issue for bioartificial arteries. A PDE model based on continuum mechanical theory that describes the distribution of cells, fibers, and stresses in a tissue will be used to simulate the evolving compaction of a bioartificial artery. Optimization of the ultimate properties of the bioartificial artery is sought, in particular the ability to withstand pulsatile arterial pressure. PDE systems of a similar mathematical structure commonly arise as models for chemical processes with a need for their control and optimization. The project includes collaboration with and input from scientists and engineers at several industrial and government laboratories with applications in processing. To optimize or control a process described by PDEs, the original time interval is divided into subintervals in a multiple- shooting type approach. The PDEs on each subinterval are discretized in space via parallel adaptive finite el ement methods to give a large system of algebraic equations (DAEs). Parameters or control variables are then optimized, subject to state and control variable and continuity constraints (equality and inequality) using large-scale nonlinear programming techniques. Extensive knowledge and research experience in adaptive methods for PDEs, DAEs, large-scale optimization, parallel computing, computing environments, and chemical and biological processes, are required to successfully develop such a PSE. The reaerch team members cover this broad range of expertise, and have a successful record of collaboration with each other.
这项研究的主要目标是开发用于优化和控制化学和生物过程的高性能问题解决环境(PSE),最初的重点是生物工程应用。 此类过程的优化和控制需要在两个或三个空间维度上重复求解瞬态偏方程 (PDE)。 这个问题必须以交互方式解决,只有使用大规模并行计算机才能满足。 目前还不存在如此全面且强大的 PSE,其开发提出了重大的计算和计算机科学挑战。 最初的应用是小直径生物人工动脉的设计和优化。 美国每年进行超过 600,000 例血管置换手术,其中许多涉及小直径血管的合成聚合物替代品,这些血管由于缺乏生物相容性而失败,这对于生物人工动脉来说不是问题。 基于连续力学理论的偏微分方程模型描述了组织中细胞、纤维和应力的分布,将用于模拟生物人工动脉不断变化的压缩过程。 寻求生物人工动脉最终特性的优化,特别是承受脉动动脉压的能力。 具有类似数学结构的偏微分方程系统通常作为需要控制和优化的化学过程模型而出现。 该项目包括与多个工业和政府实验室的科学家和工程师合作并提供加工应用的投入。 为了优化或控制偏微分方程描述的过程,原始时间间隔被分成多重射击类型的子间隔。 每个子区间上的偏微分方程通过并行自适应有限元方法在空间中离散化,以给出一个大型代数方程组 (DAE)。 然后使用大规模非线性编程技术,根据状态和控制变量以及连续性约束(等式和不等式)对参数或控制变量进行优化。 成功开发这样的 PSE 需要在 PDE、DAE、大规模优化、并行计算、计算环境以及化学和生物过程的自适应方法方面拥有丰富的知识和研究经验。 研究团队成员涵盖广泛的专业知识,并拥有成功的相互合作记录。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Linda Petzold其他文献
Multi-View Treelet Transform
多视图小树变换
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
B. Mitchell;Linda Petzold - 通讯作者:
Linda Petzold
An efficient, scalable numerical algorithm for the simulation of electrochemical systems on irregular domains
- DOI:
10.1016/j.jcp.2007.03.025 - 发表时间:
2007-08-10 - 期刊:
- 影响因子:
- 作者:
Matthew Buoni;Linda Petzold - 通讯作者:
Linda Petzold
An algorithm for simulation of electrochemical systems with surface–bulk coupling strategies
- DOI:
10.1016/j.jcp.2009.09.032 - 发表时间:
2010-01-20 - 期刊:
- 影响因子:
- 作者:
Matthew Buoni;Linda Petzold - 通讯作者:
Linda Petzold
Empirical Quantitative Analysis of COVID-19 Forecasting Models
COVID-19 预测模型的实证定量分析
- DOI:
10.1109/icdmw53433.2021.00069 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Yun Zhao;Yuqing Wang;Junfeng Liu;H. Xia;Zhenni Xu;Qinghang Hong;Zhiyang Zhou;Linda Petzold - 通讯作者:
Linda Petzold
MatKB: Semantic Search for Polycrystalline Materials Synthesis Procedures
MatKB:多晶材料合成程序的语义搜索
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Xianjun Yang;Stephen Wilson;Linda Petzold - 通讯作者:
Linda Petzold
Linda Petzold的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Linda Petzold', 18)}}的其他基金
Collaborative Research: Next-Generation Algorithms for Stochastic Spatial Simulation of Cell Polarization
合作研究:细胞极化随机空间模拟的下一代算法
- 批准号:
1001012 - 财政年份:2010
- 资助金额:
$ 165万 - 项目类别:
Standard Grant
ITR - (ASE) - (sim+dmc): Computational Toolbox for the Investigation of Multiscale Surface Processes
ITR - (ASE) - (sim dmc):用于研究多尺度表面过程的计算工具箱
- 批准号:
0428912 - 财政年份:2004
- 资助金额:
$ 165万 - 项目类别:
Continuing Grant
Collaborative Research ITR/AP: Enabling Microscopic Simulators to Perform System-Level Analysis
协作研究 ITR/AP:使微观模拟器能够执行系统级分析
- 批准号:
0205584 - 财政年份:2002
- 资助金额:
$ 165万 - 项目类别:
Standard Grant
IGERT: Graduate Education Program in Computational Science and Engineering with Emphasis on Multiscale Problems in Fluids and Materials
IGERT:计算科学与工程研究生教育项目,重点关注流体和材料的多尺度问题
- 批准号:
0221715 - 财政年份:2002
- 资助金额:
$ 165万 - 项目类别:
Continuing Grant
ITR: Computational Infrastructure for Microfluidic Systems with Applications to Biotechnology
ITR:微流体系统的计算基础设施及其在生物技术中的应用
- 批准号:
0086061 - 财政年份:2000
- 资助金额:
$ 165万 - 项目类别:
Continuing Grant
MDC: A High-Performance Problem-Solving Environment for Optimization and Control of Chemical and Biological Processes
MDC:用于优化和控制化学和生物过程的高性能问题解决环境
- 批准号:
9896198 - 财政年份:1997
- 资助金额:
$ 165万 - 项目类别:
Continuing Grant
相似海外基金
Fundamental research on students performance for solving problem statistically
学生统计解决问题表现的基础研究
- 批准号:
19K20947 - 财政年份:2018
- 资助金额:
$ 165万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
HIGH PERFORMANCE AND HYBRID NEAR-DRY MACHINING BY UTILIZING PROBLEM-SOLVING METHOD BASED ON TRIBOLOGY
利用基于摩擦学的问题解决方法进行高性能混合近干加工
- 批准号:
17K06122 - 财政年份:2017
- 资助金额:
$ 165万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Problem Structure and SAT Solver Performance: Relating Theory and Practice
问题结构和 SAT 求解器性能:理论与实践的联系
- 批准号:
511893-2017 - 财政年份:2017
- 资助金额:
$ 165万 - 项目类别:
University Undergraduate Student Research Awards
DCL:HSI: Exploring how peer-collaborative math problem-solving courses and mentoring affect performance/persistence for HSI 2-year college and 4-year college transfer students
DCL:HSI:探索同伴协作数学问题解决课程和指导如何影响 HSI 2 年制大学和 4 年制大学转学生的表现/坚持
- 批准号:
1644899 - 财政年份:2016
- 资助金额:
$ 165万 - 项目类别:
Standard Grant
Measuring individual and group performance in collaborative problem solving
衡量协作解决问题中个人和团队的表现
- 批准号:
DP160101678 - 财政年份:2016
- 资助金额:
$ 165万 - 项目类别:
Discovery Projects
Toward the final solution for the design problem of robust performance
寻求鲁棒性能设计问题的最终解决方案
- 批准号:
15K06133 - 财政年份:2015
- 资助金额:
$ 165万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Stereotype Threat Effects and Deaf and Hard of Hearing College Students' Mathematics Problem Solving Performance
刻板印象威胁效应与聋哑大学生数学解题表现
- 批准号:
1420063 - 财政年份:2014
- 资助金额:
$ 165万 - 项目类别:
Standard Grant
Improving Problem-Solving Performance of Students with Mathematics Difficulties
提高数学困难学生解决问题的能力
- 批准号:
7818702 - 财政年份:2009
- 资助金额:
$ 165万 - 项目类别:
Improving Problem-Solving Performance of Students with Mathematics Difficulties
提高数学困难学生解决问题的能力
- 批准号:
7942055 - 财政年份:2009
- 资助金额:
$ 165万 - 项目类别:
Doctoral Dissertation Improvement Grant: Children's Performance of Problem-Solving Genres
博士论文改进补助金:儿童解决问题类型的表现
- 批准号:
0823113 - 财政年份:2008
- 资助金额:
$ 165万 - 项目类别:
Standard Grant














{{item.name}}会员




