Algorithmic Problems in Number Theory
数论中的算法问题
基本信息
- 批准号:9600083
- 负责人:
- 金额:$ 5.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1996
- 资助国家:美国
- 起止时间:1996-06-01 至 1999-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The number field sieve is the latest algorithm for factoring integers into primes. The investigator will continue his research into the speed of the number field sieve. The plan is first, to study the precise distribution of certain vectors constructed in the number field sieve; second, to develop tools to analyze the probability that vectors chosen from a non-uniform distributimn will be independent; third, combine these results to sharpen the known heuristics for the time taken by the number field sieve. The investigator will also consider various problems in multiprecision arithmetic from a geometric viewpoint. This research falls into the general mathematical field of Number Theory. Number theory has its historical roots in the study of the whole numbers, addressing such questions as those dealing with the divisibility of one whole number by another. It is among the oldest branches of mathematics and was pursued for many centuries for purely aesthetic reasons. However, within the last half century it has become an indispensable tool in diverse applications in areas such as data transmission and processing, and communication systems.
数域筛法是将整数分解成素数的最新算法。调查员将继续他对数字域筛子速度的研究。我们的计划是,第一,研究在数字域筛子中构造的某些向量的精确分布;第二,开发工具来分析从非均匀分布中选择的向量将独立的概率;第三,结合这些结果来改进数字域筛子所花费的时间的已知启发式。研究人员还将从几何角度考虑多精度运算中的各种问题。这项研究属于数论的一般数学领域。数论的历史根源在于对整数的研究,它解决了一些问题,比如一个整数被另一个整数整除的问题。它是数学中最古老的分支之一,出于纯粹的美学原因,人们追寻了许多个世纪。然而,在过去的半个世纪里,它已经成为数据传输和处理以及通信系统等领域的各种应用中不可或缺的工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Bernstein其他文献
Cardiovascular β-Adrenergic Receptor Subtype Physiology Studied by Targeted Gene Disruption • 95
通过靶向基因破坏研究心血管β-肾上腺素能受体亚型生理学•95
- DOI:
10.1203/00006450-199704001-00116 - 发表时间:
1997-04-01 - 期刊:
- 影响因子:3.100
- 作者:
Daniel Bernstein;Daniel K Rohrer;Kavin H Desai;Andrzej Chruscinski;Eric Schauble;Gregory S Barsh;Brian K Kobilka - 通讯作者:
Brian K Kobilka
GENETIC DETERMINANTS OF DRAMATIC IMPROVEMENT IN LEFT VENTRICULAR FUNCTION IN PATIENTS WITH HEART FAILURE
- DOI:
10.1016/s0735-1097(11)62041-x - 发表时间:
2011-04-05 - 期刊:
- 影响因子:
- 作者:
Maco V. Perez;Aleksandra Pavlovic;Matthew T. Wheeler;Frederick E. Dewey;Daniel Bernstein;Michael B. Fowler;Robert C. Robbins;Thomas Quertermous;Khin Chan;Devin Absher;Michael Ho;Elizabeth Cretti;Audrey Southwick;David Rosenthal;Richard M. Myers;Paul Heidenreich;Lisa Garrett;Daniel Sedehi;David Kao;Heidi Salisbury - 通讯作者:
Heidi Salisbury
Mechanobiology of Myosin Mutations and Myofibril Remodeling in iPSC-Cardiomyocytes
- DOI:
10.1016/j.bpj.2017.11.2720 - 发表时间:
2018-02-02 - 期刊:
- 影响因子:
- 作者:
Alison Schroer;Kristina Kooiker;Arjun Adhikari;Kathleen Ruppel;Daniel Bernstein;James Spudich;Beth Pruitt - 通讯作者:
Beth Pruitt
On the Functional Assessment of Hypertrophic Cardiomyopathy-Causing Mutations in Human β-Cardiac Myosin and the Role of Myosin Binding Protein-C
- DOI:
10.1016/j.bpj.2018.11.2520 - 发表时间:
2019-02-15 - 期刊:
- 影响因子:
- 作者:
Darshan V. Trivedi;Saswata S. Sarkar;Arjun S. Adhikari;Makenna M. Morck;Kristina B. Kooiker;Daniel Bernstein;Kathleen M. Ruppel;James A. Spudich - 通讯作者:
James A. Spudich
Mitral Valve Translocation: A Novel Operation for the Treatment of Secondary Mitral Regurgitation
- DOI:
10.1016/j.athoracsur.2021.07.043 - 发表时间:
2021-12-01 - 期刊:
- 影响因子:
- 作者:
Chetan Pasrija;Rachael W. Quinn;Daniel Bernstein;Douglas Tran;Hani Alkhatib;MaryJoe Rice;David Morales;Aakash Shah;Mehrdad Ghoreishi;Erik R. Strauss;Reney Henderson;Michael N. D’Ambra;James S. Gammie - 通讯作者:
James S. Gammie
Daniel Bernstein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Bernstein', 18)}}的其他基金
Collaborative Research: EAGER-QIA: High-Genus Code-Based Cryptography
合作研究:EAGER-QIA:基于高级代码的密码学
- 批准号:
2037867 - 财政年份:2020
- 资助金额:
$ 5.9万 - 项目类别:
Standard Grant
Collaborative Research: Short Vectors in Lattices
合作研究:格子中的短向量
- 批准号:
1913167 - 财政年份:2019
- 资助金额:
$ 5.9万 - 项目类别:
Standard Grant
TWC: Option: Medium: Collaborative: Authenticated Ciphers
TWC:选项:中:协作:经过身份验证的密码
- 批准号:
1314919 - 财政年份:2013
- 资助金额:
$ 5.9万 - 项目类别:
Standard Grant
Workshop on Elliptic Curves and Computation
椭圆曲线与计算研讨会
- 批准号:
1057551 - 财政年份:2010
- 资助金额:
$ 5.9万 - 项目类别:
Standard Grant
CAREER: Computational number theory, cryptography, and computer security
职业:计算数论、密码学和计算机安全
- 批准号:
9983950 - 财政年份:2000
- 资助金额:
$ 5.9万 - 项目类别:
Continuing Grant
相似海外基金
Arithmetic in group rings and study of zero-sum problems in combinatorial number theory
群环中的算术与组合数论中的零和问题研究
- 批准号:
RGPIN-2017-03903 - 财政年份:2022
- 资助金额:
$ 5.9万 - 项目类别:
Discovery Grants Program - Individual
Distribution problems for L-functions and number fields
L 函数和数域的分布问题
- 批准号:
RGPIN-2021-02952 - 财政年份:2022
- 资助金额:
$ 5.9万 - 项目类别:
Discovery Grants Program - Individual
Distribution problems for L-functions and number fields
L 函数和数域的分布问题
- 批准号:
RGPIN-2021-02952 - 财政年份:2021
- 资助金额:
$ 5.9万 - 项目类别:
Discovery Grants Program - Individual
Arithmetic in group rings and study of zero-sum problems in combinatorial number theory
群环中的算术与组合数论中的零和问题研究
- 批准号:
RGPIN-2017-03903 - 财政年份:2021
- 资助金额:
$ 5.9万 - 项目类别:
Discovery Grants Program - Individual
SaTC: CORE: Small: Classical and quantum algorithms for number-theoretic problems arising in cryptography
SaTC:核心:小:密码学中出现的数论问题的经典和量子算法
- 批准号:
2001470 - 财政年份:2020
- 资助金额:
$ 5.9万 - 项目类别:
Standard Grant
Arithmetic in group rings and study of zero-sum problems in combinatorial number theory
群环中的算术与组合数论中的零和问题研究
- 批准号:
RGPIN-2017-03903 - 财政年份:2020
- 资助金额:
$ 5.9万 - 项目类别:
Discovery Grants Program - Individual
New techniques for old problems in number theory
数论老问题的新技术
- 批准号:
EP/S00226X/2 - 财政年份:2019
- 资助金额:
$ 5.9万 - 项目类别:
Fellowship
Automaton-Based Solution of Number Theory Problems
基于自动机的数论问题解决方案
- 批准号:
539546-2019 - 财政年份:2019
- 资助金额:
$ 5.9万 - 项目类别:
University Undergraduate Student Research Awards
Polynomial Norm Problems in Number Theory
数论中的多项式范数问题
- 批准号:
RGPIN-2015-05461 - 财政年份:2019
- 资助金额:
$ 5.9万 - 项目类别:
Discovery Grants Program - Individual
Arithmetic in group rings and study of zero-sum problems in combinatorial number theory
群环中的算术与组合数论中的零和问题研究
- 批准号:
RGPIN-2017-03903 - 财政年份:2019
- 资助金额:
$ 5.9万 - 项目类别:
Discovery Grants Program - Individual