Constitutive Equations for Process and Product Design of Lightweight HCP Metals
轻质 HCP 金属工艺和产品设计的本构方程
基本信息
- 批准号:9610130
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-05-01 至 2001-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9610130 Anand Whatever the mode of' transportation, materials used in construction of vehicles need to combine -good structural stiffness. strength, and toughness with high resistance to corrosion, and they must be as lightweight as possible in order to save fuel. Aluminum alloys have long been used for skins and frames of aircraft. and are beginning to be used in the automotive industry. Two other important light metals for the transportation industry ire titanium and magnesium. The recent progress in the development of a mathematical theory of polycrystalline plasticity which predicts not only the anisotropic macroscopic stress-strain response and shape changes, but also the evolution of crystallographic texture during deformation, has occurred primarily for materials with face-centered-cubic (fcc) crystals. Much less progress of this type has occurred for materials with hexagonal-close-packed (hcp) crystal structure. Compared with fcc materials, the hcp materials exhibit more complex modes of plastic deformation due to their lower symmetry. Inelastic deformation resistances of different slip systems can be substantially different in the hcp materials, and unlike the fcc aluminum alloys, the hcp titanium and magnesium alloys exhibit deformation twinning. This causes pronounced anisotropies in their macroscopic deformation characteristics, and these anisotropies need to be properly accounted for in developing a robust computational capability for 1. Process Design - deformation processing, and 2. Product design - improved structural response of components, made from titanium and magnesium1. Of particular importance is the development of a fundamental understanding of the inelastic deformation behavior of these materials by slip and twinning, and the development of accurate elasto- viscoplastic constitutive equations which describe this deformation behavior. We propose to develop anisotropic, elasto-plastic constitutive equations and computational procedures for modeling and simulation of inelastic deformation due to both crystallographic slip ,and twinning in hcp titanium and magnesium. The computational capability will be useful in simulating the development of anisotropy due to the evolution of crystallographic texture. The mathematical models and procedures that we propose to develop should be useful in the design of a variety of deformation-processing operations, and the design of components for structural performance. _______________________________ 1 Although the majority of processing of magnesium allows is done by casting, magnesium is also wrought to form tubes, plates, and sheet.
9610130 Anand 无论运输方式如何, 车辆的建造需要联合收割机-良好的结构 刚度高强度和韧性, 腐蚀,它们必须尽可能轻, 为了节省燃料。 铝合金长期以来一直被用于 用于飞机的蒙皮和框架。并开始成为 用于汽车工业。 两个重要的光 用于运输工业的金属是钛, 镁。 本文介绍了近年来在开发 多晶塑性的数学理论, 不仅预测了各向异性的宏观应力-应变 反应和形状的变化,但也演变 在变形过程中, 主要用于面心立方(fcc)材料 晶体这种类型的进展要少得多, 材料 与 六方密排 (hcp) 晶体 结构 与fcc材料相比, 表现出更复杂的塑性变形模式, 较低的对称性 非弹性变形抗力 不同的卡瓦系统在以下方面可以是显著不同的 与fcc铝合金不同, hcp钛和镁合金表现出变形 双胞胎 这会导致它们的显著各向异性, 宏观 变形 特性, 和 这些 各向 需要妥善处理 为 在 开发强大的计算能力, 1.工艺设计-变形加工,以及 2.产品设计-改善结构响应 的 部件, 由钛和镁制成。 特别重要的是,这些材料的非弹性变形行为的滑移和孪生的基本理解的发展,和精确的弹粘塑性本构方程描述这种变形行为的发展。 我们建议发展各向异性的弹塑性 本构方程和计算程序 非弹性变形的建模和仿真 hcp钛中的晶体滑移和孪生 和镁。 计算能力将是有用的 在模拟各向异性的发展, 晶体结构的演化 数学 我们建议开发的模型和程序应 适用于各种变形加工的设计 操作,以及结构组件的设计 性能 __
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lallit Anand其他文献
Magnetostriction of soft-magnetorheological elastomers
- DOI:
10.1016/j.jmps.2024.105934 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:
- 作者:
Eric M. Stewart;Lallit Anand - 通讯作者:
Lallit Anand
A large deformation viscoelasticity theory for elastomeric materials and its numerical implementation in the open-source finite element program FEniCSx
用于弹性体材料的大变形粘弹性理论及其在开源有限元程序 FEniCSx 中的数值实现
- DOI:
10.1016/j.ijsolstr.2024.113023 - 发表时间:
2024-10-15 - 期刊:
- 影响因子:3.800
- 作者:
Eric M. Stewart;Lallit Anand - 通讯作者:
Lallit Anand
Lallit Anand的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lallit Anand', 18)}}的其他基金
A Chemo-Thermo-Mechanics Theory: Application to High-Temperature Thermal Barrier Coatings
化学热力学理论:在高温热障涂层中的应用
- 批准号:
1063626 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Standard Grant
Constitutive equations and computational procedures for modeling nano/micro-scale superplastic forming of bulk metallic glasses
用于模拟大块金属玻璃纳米/微米级超塑性成型的本构方程和计算程序
- 批准号:
0555614 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Standard Grant
Manufacturing Processes for Polymer-Based Microfluidic Devices
聚合物微流体器件的制造工艺
- 批准号:
0517966 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Standard Grant
SHAPE-MEMORY MATERIALS: CRYSTALLOGRAPHIC TEXTURE AND ITS CONSEQUENCES
形状记忆材料:晶体结构及其后果
- 批准号:
0002930 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Standard Grant
Design of Surface Texture for Improved Control of Friction and Formability of Sheet Products
表面纹理设计可改善片材产品的摩擦和成型性控制
- 批准号:
9634265 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Standard Grant
Powder Compaction for Net Shape Manufacturing
用于净成型制造的粉末压实
- 批准号:
9401946 - 财政年份:1994
- 资助金额:
-- - 项目类别:
Standard Grant
Deformation Processing: Crystallographic Texture Evolution and Shear Band Formation
变形处理:晶体织构演化和剪切带形成
- 批准号:
9215246 - 财政年份:1993
- 资助金额:
-- - 项目类别:
Continuing grant
Single Crystal Superalloys: Constitutive Equations and Computational Procedures
单晶高温合金:本构方程和计算程序
- 批准号:
9215152 - 财政年份:1992
- 资助金额:
-- - 项目类别:
Standard Grant
Strategic Manufacturing Initiative: Computer-Integrated Analysis of Deformation Processing
战略制造计划:变形处理的计算机集成分析
- 批准号:
8914161 - 财政年份:1990
- 资助金额:
-- - 项目类别:
Continuing grant
Mechanical Sciences: Constitutive Equations and Computa- tional Procedures, with Application to Hot-Forging Metal Working
机械科学:本构方程和计算程序,及其在热锻金属加工中的应用
- 批准号:
8315117 - 财政年份:1984
- 资助金额:
-- - 项目类别:
Continuing Grant
相似海外基金
Bi-parameter paracontrolled approach to singular stochastic wave equations
奇异随机波动方程的双参数参数控制方法
- 批准号:
EP/Y033507/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Intersection Theory for Differential Equations
微分方程的交集理论
- 批准号:
2401570 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
- 批准号:
2402028 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
- 批准号:
2306378 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Problems in Regularity Theory of Partial Differential Equations
偏微分方程正则论中的问题
- 批准号:
2350129 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
New Challenges in the Study of Propagation of Randomness for Nonlinear Evolution Equations
非线性演化方程随机传播研究的新挑战
- 批准号:
2400036 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Conference: Second Joint Alabama--Florida Conference on Differential Equations, Dynamical Systems and Applications
会议:第二届阿拉巴马州-佛罗里达州微分方程、动力系统和应用联合会议
- 批准号:
2342407 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
- 批准号:
2346780 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Using Artificial Intelligence to Solve Complex Flow Equations in a Wet Gas Environment
使用人工智能求解湿气体环境中的复杂流量方程
- 批准号:
10091110 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Collaborative R&D
Quantum Algorithms for Nonlinear Differential Equations - QuANDiE
非线性微分方程的量子算法 - QuANDiE
- 批准号:
EP/Y004663/2 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant














{{item.name}}会员




