New Challenges in the Study of Propagation of Randomness for Nonlinear Evolution Equations

非线性演化方程随机传播研究的新挑战

基本信息

  • 批准号:
    2400036
  • 负责人:
  • 金额:
    $ 38.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-07-01 至 2027-06-30
  • 项目状态:
    未结题

项目摘要

Waves are everywhere in nature. We observe them when we look at the ripples that form when we throw a pebble in a lake, the expanding ring called a wave-packet; or when we look at a rainbow that is formed when light wave passes through a prism or water droplet and note the spatial separation of white light into different colors. Partial differential equations (PDE) modeling wave propagation phenomena have played a fundamental role in understanding such physical and natural events as well as quantum mechanics, fiber optics, ferromagnetism, atmospheric and water waves, and many other physical models. In these cases, wave phenomena are never too smooth or too simple, and in fact the byproduct of nonlinear wave interactions as they propagate in time. Being able to understand and describe the dynamical behavior of such models under certain noisy conditions or given an initial statistical ensemble and have a precise description of how the inherent randomness built in these models propagates, is fundamental to accurately predict wave phenomena when studying the natural world. This project is aimed at answering several central questions about long-time dynamics and the propagation of randomness in this context using analytical and probabilistic methodologies. The work of the project, and its connections to science, promotes interdisciplinary interactions and fosters the training of graduate students and junior researchers in the United States thus fundamentally contributing to its STEM workforce. The interplay of deterministic methods in nonlinear PDE and probabilistic ones naturally feed off each other and when combined contribute to a deep understanding of wave phenomena, which opens the door to new paradigms that move research forward in various directions. The Principal Investigator studies several projects at the forefront of current research. The problems, grouped in two interrelated directions, aim broadly at: (1) studying the out of equilibrium long-time dynamics of dispersive flows from a probabilistic viewpoint in energy subcritical regimes by means of suitable quantitative quasi-invariance, modified energies and stability theory of random structures; (2) establishing the invariance of Gibbs measures for the probabilistically critical three-dimensional nonlinear Schrödinger equation (also known as a model in constructive quantum field theory) in the context of equilibrium statistical mechanics; (3) establishing a suitable probabilistic local theory of the hyperbolic sine-Gordon equation on 2D tori and the invariance of its associated Gibbs measure; and (4) the development of the random tensor theory for the nonlinear wave equations and for non-Gaussian data. The research bridges between the dispersive and wave equations communities that specialize in stochastic equations and contributes to understanding in a fundamental way propagation of randomness in nonlinear wave phenomena.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
波在自然界中无处不在。当我们在湖中投下一颗小石子时,我们会看到涟漪形成的波纹,这个不断扩大的环被称为波包;或者当我们看到光波通过棱镜或水滴时形成的彩虹,注意到白色光在空间上分离成不同的颜色时,我们就会看到它们。偏微分方程(PDE)建模波传播现象在理解这些物理和自然事件以及量子力学、光纤、铁磁性、大气和水波以及许多其他物理模型方面发挥了基础作用。在这些情况下,波动现象从来不会太平滑或太简单,事实上,它是非线性波动相互作用的副产品,因为它们在时间上传播。能够理解和描述这些模型在某些噪声条件下或给定初始统计系综的动力学行为,并精确描述这些模型中固有的随机性如何传播,是在研究自然世界时准确预测波动现象的基础。这个项目的目的是回答几个核心问题的长期动态和传播的随机性,在这种情况下,使用分析和概率方法。该项目的工作及其与科学的联系促进了跨学科的互动,并促进了美国研究生和初级研究人员的培训,从而从根本上促进了其STEM劳动力。非线性偏微分方程中确定性方法和概率方法的相互作用自然地相互补充,当结合起来时,有助于对波动现象的深入理解,这为推动研究向各个方向发展的新范式打开了大门。首席研究员研究了当前研究前沿的几个项目。这些问题可分为两个相互关联的方向,其主要目的是:(1)利用合适的定量拟不变性、修正的能量和随机结构稳定性理论,从概率观点研究能量亚临界区弥散流的非平衡长时间动力学;(2)建立了概率临界三维非线性薛定谔方程的Gibbs测度不变性(3)建立了二维环面上双曲sine-Gordon方程的概率定域理论及其相应的Gibbs测度的不变性;非线性波动方程和非高斯数据的随机张量理论的发展。该研究在专门研究随机方程的色散和波动方程社区之间架起了桥梁,有助于从根本上理解非线性波动现象中随机性的传播。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrea Nahmod其他文献

Andrea Nahmod的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrea Nahmod', 18)}}的其他基金

Propagation of Randomness in Nonlinear Evolution Equations
非线性演化方程中随机性的传播
  • 批准号:
    2101381
  • 财政年份:
    2021
  • 资助金额:
    $ 38.85万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: New Challenges in the Derivation and Dynamics of Quantum Systems
FRG:协作研究:量子系统推导和动力学的新挑战
  • 批准号:
    2052740
  • 财政年份:
    2021
  • 资助金额:
    $ 38.85万
  • 项目类别:
    Standard Grant
Collaborative Research: Dynamics of Nonlinear Partial Differential Equations: Integrating Deterministic and Probabilistic Methods
合作研究:非线性偏微分方程的动力学:集成确定性和概率方法
  • 批准号:
    1800852
  • 财政年份:
    2018
  • 资助金额:
    $ 38.85万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Long-Term Dynamics of Nonlinear Dispersive and Hyperbolic Equations: Deterministic and Probabilistic Methods
FRG:协作研究:非线性色散和双曲方程的长期动力学:确定性和概率方法
  • 批准号:
    1463714
  • 财政年份:
    2015
  • 资助金额:
    $ 38.85万
  • 项目类别:
    Continuing Grant
New Challenges in Nonlinear PDEs.
非线性偏微分方程的新挑战。
  • 批准号:
    1201443
  • 财政年份:
    2012
  • 资助金额:
    $ 38.85万
  • 项目类别:
    Continuing Grant
Nonlinear Fourier Analysis and Partial Differential Equations
非线性傅里叶分析和偏微分方程
  • 批准号:
    0803160
  • 财政年份:
    2008
  • 资助金额:
    $ 38.85万
  • 项目类别:
    Standard Grant
Nonlinear Fourier Analysis And Geometric Dispersive Equations.
非线性傅里叶分析和几何色散方程。
  • 批准号:
    0503542
  • 财政年份:
    2005
  • 资助金额:
    $ 38.85万
  • 项目类别:
    Continuing Grant
Harmonic Analysis and Geometric Partial Differential Equations
调和分析与几何偏微分方程
  • 批准号:
    0202139
  • 财政年份:
    2002
  • 资助金额:
    $ 38.85万
  • 项目类别:
    Continuing Grant
Harmonic Analysis and Partial Differential Equations
调和分析和偏微分方程
  • 批准号:
    9971159
  • 财政年份:
    1999
  • 资助金额:
    $ 38.85万
  • 项目类别:
    Standard Grant

相似国自然基金

Supply Chain Collaboration in addressing Grand Challenges: Socio-Technical Perspective
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目

相似海外基金

Tackling the challenges of transitioning to parenthood in forced migrant women: A longitudinal study adopting a salutogenic approach
应对被迫移民妇女过渡到为人父母的挑战:采用有益方法的纵向研究
  • 批准号:
    2891463
  • 财政年份:
    2023
  • 资助金额:
    $ 38.85万
  • 项目类别:
    Studentship
A study on identifying the advantages and challenges of rideshare services for female commuters in big cities of developing countries
发展中国家大城市女性通勤者乘车共享服务的优势和挑战研究
  • 批准号:
    23K17008
  • 财政年份:
    2023
  • 资助金额:
    $ 38.85万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
A Comparative Study of Museums of Migration: Implications and Challenges of Displaying National Diversity
移民博物馆的比较研究:展示民族多样性的影响和挑战
  • 批准号:
    23K01807
  • 财政年份:
    2023
  • 资助金额:
    $ 38.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Racial/Ethnic Disparities in Health Care and Challenges in Insurance Plan Choices among Older People with Alzheimer’s Disease and Related Dementia: A Mixed Methods Study of Medicare Options
患有阿尔茨海默病和相关痴呆症的老年人在医疗保健方面的种族/民族差异以及保险计划选择的挑战:医疗保险选项的混合方法研究
  • 批准号:
    10723148
  • 财政年份:
    2023
  • 资助金额:
    $ 38.85万
  • 项目类别:
Political Debasement in Japan and Its Challenges: New Directions in the Study of Deliberative Political Communication
日本的政治堕落及其挑战:协商政治传播研究的新方向
  • 批准号:
    23K01245
  • 财政年份:
    2023
  • 资助金额:
    $ 38.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mechanistic study on unique corrosion phenomena in specific environments and challenges to extend the service life of accelerators and irradiation facilities
特定环境下独特腐蚀现象的机理研究以及延长加速器和辐照设施使用寿命的挑战
  • 批准号:
    23H01892
  • 财政年份:
    2023
  • 资助金额:
    $ 38.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Empirical Study on the Challenges of International Collaborative Research in Agricultural Sciences and the Role of Foreign Students
农业科学研究国际合作研究挑战和留学生作用的实证研究
  • 批准号:
    21K02628
  • 财政年份:
    2021
  • 资助金额:
    $ 38.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on physiological role of sulfation metabolism: challenges on the synthesis of phenolic sulfates and functional evaluation
硫酸化代谢的生理作用研究:酚类硫酸盐合成的挑战及功能评价
  • 批准号:
    20K05881
  • 财政年份:
    2020
  • 资助金额:
    $ 38.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Dementia and Related Health and Social Challenges in Lebanon: A Population Study
黎巴嫩的痴呆症及相关健康和社会挑战:人口研究
  • 批准号:
    10705979
  • 财政年份:
    2020
  • 资助金额:
    $ 38.85万
  • 项目类别:
Dementia and Related Health and Social Challenges in Lebanon: A Population Study
黎巴嫩的痴呆症及相关健康和社会挑战:人口研究
  • 批准号:
    10053899
  • 财政年份:
    2020
  • 资助金额:
    $ 38.85万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了