Computational Optimization in Collaboration with Mexican Researchers

与墨西哥研究人员合作的计算优化

基本信息

  • 批准号:
    9613805
  • 负责人:
  • 金额:
    $ 2.14万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-09-01 至 2000-01-31
  • 项目状态:
    已结题

项目摘要

Efficient solution to optimization problems is of great interest and importance in practice and theory. Unfortunately, many important optimization problems turn out to be NP-hard, which implies that they do not have efficient solutions based on current computer techniques. However, this does not obviate the need for solving these problems. Approximation algorithms and heuristic algorithms for these optimization problems have been studied. Recent progress in computational optimization has greatly advanced the understanding of the approximability of optimization problems. In particular, recent study of the SATISFIABILITY problem (SAT) and the MAXIMUM SATISFIABILITY problem (MAXSAT) has played an important role in recent advances in computational optimization. Motivated by such an exciting progress in the area, Dr. Jianer Chen from the Department of Computer Science at Texas A&M University (TAMU) of the United States of America and Dr. Guillermo Morales-Luna from the Computer Science Section at the Mexican Research and Advanced Studies Center of National Polythecnic Insitute (CINVESTAV_IPN) of Mexico have formed a research team for performing the U.S.-Mexico collaborative research. The primary objectives of this collaboration are: to establish a long term cooperation among the theoretical computer science groups in the computer sciences departments of TAMU and CINVESTAV-IPN; to strengthen the graduate program in Computer Science in CINVESTAV-IPN, and to increase the international competence and accomplishments of the theoretical computer science research group at TAMU; to develop new techniques for designing better approximation algorithms and to develop new methods for analyzing existing approximation algorithms; and to develop a computational environment for testing and experimenting with approximation algorithms, in particular, approximation algorithms for MAXSAT, with special care to examine the efficiency and approximation factors of the tested algorithms .
优化问题的有效求解在理论和实践中都具有重要意义。 不幸的是,许多重要的优化问题都是NP难的,这意味着它们没有基于当前计算机技术的有效解决方案。 然而,这并不意味着需要解决这些问题。 研究了求解这些优化问题的近似算法和启发式算法。 计算优化的最新进展极大地促进了对优化问题的可逼近性的理解。 特别是,最近的研究满意度问题(SAT)和最大满意度问题(MAXSAT)在计算优化的最新进展中发挥了重要作用。 受到这一领域令人兴奋的进展的激励,美国德克萨斯农工大学计算机科学系的陈健尔博士和墨西哥国家理工学院墨西哥研究和高级研究中心的Guillermo Morales-Luna博士组成了一个研究小组,执行美国-墨西哥合作研究。 这次合作的主要目标是:在TAMU和CINVESTAV-IPN计算机科学系的理论计算机科学小组之间建立长期合作;加强CINVESTAV-IPN计算机科学研究生课程,并提高TAMU理论计算机科学研究小组的国际能力和成就;开发设计更好的近似算法的新技术,并开发分析现有近似算法的新方法;并开发用于测试和试验近似算法,特别是MAXSAT的近似算法的计算环境,特别注意检查测试算法的效率和近似因子。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jianer Chen其他文献

A blockchain-based mobile crowdsensing scheme withenhanced privacy
一种基于区块链的增强隐私的移动众感知方案
Color-Coding and its Applications: A Survey
颜色编码及其应用:调查
ARROW-TCP: Accelerating Transmission toward Efficiency and Fairness for High-Speed Networks
ARROW-TCP:加速传输,实现高速网络的高效和公平
Pleasure or pain? An evaluation of the costs and utilities of bloatware applications in android smartphones
快乐还是痛苦?
On-line maintenance of the four-connected components of a graph
图四连通分量的在线维护

Jianer Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jianer Chen', 18)}}的其他基金

AF: Small: Topological Graph Theory Revisited: With Applications in Computer Graphics
AF:小:拓扑图论重温:计算机图形学中的应用
  • 批准号:
    0917288
  • 财政年份:
    2009
  • 资助金额:
    $ 2.14万
  • 项目类别:
    Standard Grant
Studies on New Algorithmic Techniques for Parameterized Computation
参数化计算新算法技术研究
  • 批准号:
    0830455
  • 财政年份:
    2008
  • 资助金额:
    $ 2.14万
  • 项目类别:
    Standard Grant
Computational Upper and Lower Bounds via Parameterized Complexity
通过参数化复杂度计算上限和下限
  • 批准号:
    0430683
  • 财政年份:
    2004
  • 资助金额:
    $ 2.14万
  • 项目类别:
    Continuing Grant
Parameterized Computation and Applications
参数化计算及应用
  • 批准号:
    0000206
  • 财政年份:
    2000
  • 资助金额:
    $ 2.14万
  • 项目类别:
    Standard Grant
Workshop on Algorithmic Research in Midsouthwest: 1994-1996
中西南地区算法研究研讨会:1994-1996
  • 批准号:
    9406870
  • 财政年份:
    1994
  • 资助金额:
    $ 2.14万
  • 项目类别:
    Standard Grant
Applications of Topology to Algorithm Design
拓扑在算法设计中的应用
  • 批准号:
    9110824
  • 财政年份:
    1991
  • 资助金额:
    $ 2.14万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
  • 批准号:
    70601028
  • 批准年份:
    2006
  • 资助金额:
    7.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Real Versus Digital: Sustainability optimization for cultural heritage preservation in national libraries
真实与数字:国家图书馆文化遗产保护的可持续性优化
  • 批准号:
    AH/Z000041/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.14万
  • 项目类别:
    Research Grant
CAREER: Resilient and Efficient Automatic Control in Energy Infrastructure: An Expert-Guided Policy Optimization Framework
职业:能源基础设施中的弹性和高效自动控制:专家指导的政策优化框架
  • 批准号:
    2338559
  • 财政年份:
    2024
  • 资助金额:
    $ 2.14万
  • 项目类别:
    Standard Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 2.14万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 2.14万
  • 项目类别:
    Continuing Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
  • 批准号:
    2331710
  • 财政年份:
    2024
  • 资助金额:
    $ 2.14万
  • 项目类别:
    Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
  • 批准号:
    2331711
  • 财政年份:
    2024
  • 资助金额:
    $ 2.14万
  • 项目类别:
    Standard Grant
CAS: Optimization of CO2 to Methanol Production through Rapid Nanoparticle Synthesis Utilizing MOF Thin Films and Mechanistic Studies.
CAS:利用 MOF 薄膜和机理研究,通过快速纳米粒子合成优化 CO2 生产甲醇。
  • 批准号:
    2349338
  • 财政年份:
    2024
  • 资助金额:
    $ 2.14万
  • 项目类别:
    Continuing Grant
CAREER: Mitigating the Lack of Labeled Training Data in Machine Learning Based on Multi-level Optimization
职业:基于多级优化缓解机器学习中标记训练数据的缺乏
  • 批准号:
    2339216
  • 财政年份:
    2024
  • 资助金额:
    $ 2.14万
  • 项目类别:
    Continuing Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
  • 批准号:
    2414141
  • 财政年份:
    2024
  • 资助金额:
    $ 2.14万
  • 项目类别:
    Standard Grant
CAREER: Personalized, wearable robot mobility assistance considering human-robot co-adaptation that incorporates biofeedback, user coaching, and real-time optimization
职业:个性化、可穿戴机器人移动辅助,考虑人机协同适应,结合生物反馈、用户指导和实时优化
  • 批准号:
    2340519
  • 财政年份:
    2024
  • 资助金额:
    $ 2.14万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了