Applications of Topology to Algorithm Design

拓扑在算法设计中的应用

基本信息

  • 批准号:
    9110824
  • 负责人:
  • 金额:
    $ 3.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1991
  • 资助国家:
    美国
  • 起止时间:
    1991-09-01 至 1994-02-28
  • 项目状态:
    已结题

项目摘要

This research program concentrates on designing efficient graph algorithms using topological methods. The approaches are based on recently developed techniques and results in topological graph theory. A topological approach is proposed to obtain a polynomial-time bounded probabilistic algorithm solving the graph isomorphism problem, which is one of the most important graph problems whose complexity still remains unknown and which has many applications. The method adopted here is to derive a complete invariant of a graph that can be computed efficiently, based on the combination of the topological and combinatorial structures of the graph. The project is also seeking an extension of the theory and applications of Whitney's linear synthesis theorem for 2-connected graphs. A concept of semi-k-connectedness of graphs is introduced, and a conjecture is proposed that every k-connected graph has a semi- k-connected linear synthesis. Such an extension will provide us with techniques that will find wide applications in designing efficient sequential and parallel algorithms for such problems as graph connectivity, graph imbedding, and graph emulation.
本研究项目致力于使用拓扑学方法设计高效的图算法。这些方法是基于拓扑图论中最新发展的技术和结果。图同构问题是最重要的图问题之一,其复杂性尚不清楚,有着广泛的应用前景。本文提出了一种拓扑方法来得到一个多项式时间有界的概率算法。这里所采用的方法是根据图的拓扑结构和组合结构的组合,推导出一个可以有效计算的图的完全不变量。该项目还在寻求惠特尼关于2-连通图的线性合成定理的理论和应用的扩展。引入了图的半k-连通性的概念,提出了一个猜想:每个k-连通图都有半k-连通线性合成。这样的扩展将为我们提供在设计高效的顺序和并行算法方面具有广泛应用的技术,以解决图的连通性、图嵌入和图仿真等问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jianer Chen其他文献

A blockchain-based mobile crowdsensing scheme withenhanced privacy
一种基于区块链的增强隐私的移动众感知方案
Color-Coding and its Applications: A Survey
颜色编码及其应用:调查
ARROW-TCP: Accelerating Transmission toward Efficiency and Fairness for High-Speed Networks
ARROW-TCP:加速传输,实现高速网络的高效和公平
Pleasure or pain? An evaluation of the costs and utilities of bloatware applications in android smartphones
快乐还是痛苦?
On-line maintenance of the four-connected components of a graph
图四连通分量的在线维护

Jianer Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jianer Chen', 18)}}的其他基金

AF: Small: Topological Graph Theory Revisited: With Applications in Computer Graphics
AF:小:拓扑图论重温:计算机图形学中的应用
  • 批准号:
    0917288
  • 财政年份:
    2009
  • 资助金额:
    $ 3.72万
  • 项目类别:
    Standard Grant
Studies on New Algorithmic Techniques for Parameterized Computation
参数化计算新算法技术研究
  • 批准号:
    0830455
  • 财政年份:
    2008
  • 资助金额:
    $ 3.72万
  • 项目类别:
    Standard Grant
Computational Upper and Lower Bounds via Parameterized Complexity
通过参数化复杂度计算上限和下限
  • 批准号:
    0430683
  • 财政年份:
    2004
  • 资助金额:
    $ 3.72万
  • 项目类别:
    Continuing Grant
Parameterized Computation and Applications
参数化计算及应用
  • 批准号:
    0000206
  • 财政年份:
    2000
  • 资助金额:
    $ 3.72万
  • 项目类别:
    Standard Grant
Computational Optimization in Collaboration with Mexican Researchers
与墨西哥研究人员合作的计算优化
  • 批准号:
    9613805
  • 财政年份:
    1997
  • 资助金额:
    $ 3.72万
  • 项目类别:
    Standard Grant
Workshop on Algorithmic Research in Midsouthwest: 1994-1996
中西南地区算法研究研讨会:1994-1996
  • 批准号:
    9406870
  • 财政年份:
    1994
  • 资助金额:
    $ 3.72万
  • 项目类别:
    Standard Grant

相似海外基金

Conference: 57th Spring Topology and Dynamical Systems Conference
会议:第57届春季拓扑与动力系统会议
  • 批准号:
    2348830
  • 财政年份:
    2024
  • 资助金额:
    $ 3.72万
  • 项目类别:
    Standard Grant
Conference: Underrepresented Students in Algebra and Topology Research Symposium (USTARS)
会议:代数和拓扑研究研讨会(USTARS)中代表性不足的学生
  • 批准号:
    2400006
  • 财政年份:
    2024
  • 资助金额:
    $ 3.72万
  • 项目类别:
    Standard Grant
CAREER: Geometry and topology of quantum materials
职业:量子材料的几何和拓扑
  • 批准号:
    2340394
  • 财政年份:
    2024
  • 资助金额:
    $ 3.72万
  • 项目类别:
    Continuing Grant
Conference: Midwest Topology Seminar
会议:中西部拓扑研讨会
  • 批准号:
    2341204
  • 财政年份:
    2024
  • 资助金额:
    $ 3.72万
  • 项目类别:
    Standard Grant
Topology in many-body quantum systems in and out of equilibrium
处于平衡状态和非平衡状态的多体量子系统中的拓扑
  • 批准号:
    2300172
  • 财政年份:
    2024
  • 资助金额:
    $ 3.72万
  • 项目类别:
    Continuing Grant
Algebraic Structures in String Topology
弦拓扑中的代数结构
  • 批准号:
    2405405
  • 财政年份:
    2024
  • 资助金额:
    $ 3.72万
  • 项目类别:
    Standard Grant
Conference: Combinatorial and Analytical methods in low-dimensional topology
会议:低维拓扑中的组合和分析方法
  • 批准号:
    2349401
  • 财政年份:
    2024
  • 资助金额:
    $ 3.72万
  • 项目类别:
    Standard Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
  • 批准号:
    24K06659
  • 财政年份:
    2024
  • 资助金额:
    $ 3.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Gauge-theoretic Floer invariants, C* algebras, and applications of analysis to topology
职业:规范理论 Floer 不变量、C* 代数以及拓扑分析应用
  • 批准号:
    2340465
  • 财政年份:
    2024
  • 资助金额:
    $ 3.72万
  • 项目类别:
    Continuing Grant
CAREER: Elucidating the Impact of Side-Chain Topology on the Structure-Property Relationship in Bottlebrush Polymers
职业:阐明侧链拓扑对洗瓶刷聚合物结构-性能关系的影响
  • 批准号:
    2340664
  • 财政年份:
    2024
  • 资助金额:
    $ 3.72万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了