Applications of Weighted Least Squares
加权最小二乘法的应用
基本信息
- 批准号:9619489
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-07-01 至 2000-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project covers the development and analysis of new algorithms for weighted least-squares problems and their applications. In many practical applications, the weights vary by large factors, giving rise to ill-conditioned cases. In the past decade several authors independently proved a norm bound for this case of an ill-conditioned weight matrix. In previous work the PI followed up on this norm bound with the discovery of a stable algorithm for weighted least squares. ``Stable'' means that the accuracy of the algorithm is not affected by ill- conditioning of the weight matrix. The norm bound and the stable algorithm turn out to have several unexpected applications. For example, a new interior point method was discovered whose running time, unlike for all previous interior point methods, does not depend on the numerical data of the objective function. Also, a way was found to stably solve a class of finite element methods on which previously known algorithms would have failed. In this research project, weighted least-squares problems will be pursued along several lines: (1) iterative methods for weighted least squares will be developed, as well as improved sparse-matrix methods, (2) results for linear programming will be extended to semidefinite programming, (3) new algorithms will be invented for the highly nonlinear problems arising in electric power networks, which have at their core a generalized weighted least-squares problem, and (4) inverse finite element problems will be addressed. The outcome of this project will be more accurate and more efficient algorithms for optimization and simulation problems arising in science and engineering.
本项目涵盖加权最小二乘问题的新算法及其应用的开发和分析。 在许多实际应用中,权重变化很大的因素,导致病态的情况。 在过去的十年中,几位作者独立地证明了这种情况下的病态权重矩阵的范数界。 在以前的工作中,PI跟进了这个范数约束,发现了一个稳定的加权最小二乘算法。"稳定“意味着算法的准确性不受权重矩阵病态的影响。 范数界和稳定算法有几个意想不到的应用。 例如,发现了一种新的内点方法,其运行时间与所有以前的内点方法不同,不依赖于目标函数的数值数据。 此外,找到了一种方法来稳定地解决一类有限元方法,以前已知的算法会失败。 在这个研究项目中,加权最小二乘问题将沿着沿着几条路线进行: (1)加权最小二乘的迭代方法将是 开发,以及改进的稀疏矩阵方法, (2)线性规划的结果将被扩展到 半定规划, (3)新的算法将被发明的高度非线性 电力网络中出现的问题, 其核心是广义加权最小二乘问题, 和 (4)逆有限元问题将得到解决。 该项目的成果将是更准确和更有效的算法,用于科学和工程中出现的优化和模拟问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen Vavasis其他文献
Stephen Vavasis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen Vavasis', 18)}}的其他基金
MSPA-MCS: Automatic Geometric Simplification
MSPA-MCS:自动几何简化
- 批准号:
0434338 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Standard Grant
PYI: Computational Issues in the Solution of Partial Differential Equations
PYI:偏微分方程求解中的计算问题
- 批准号:
9057936 - 财政年份:1990
- 资助金额:
-- - 项目类别:
Continuing grant
相似海外基金
Spectral theory of Schrodinger forms and Stochastic analysis for weighted Markov processes
薛定谔形式的谱论和加权马尔可夫过程的随机分析
- 批准号:
23K03152 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
22 UKRI-SBE: Contextually and probabilistically weighted auditory selective attention: from neurons to networks
22 UKRI-SBE:上下文和概率加权听觉选择性注意:从神经元到网络
- 批准号:
BB/X013103/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Coupling PDE-Based Computational Inversion and Learning Via Weighted Optimization
通过加权优化耦合基于偏微分方程的计算反演和学习
- 批准号:
2309802 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Experimental Design-based Weighted Sampling
基于实验设计的加权抽样
- 批准号:
2310637 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Development and application of weighted adjacency matrix estimation methods based on multivariate data
基于多元数据的加权邻接矩阵估计方法的开发与应用
- 批准号:
23K01377 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Map Paravascular Fluid Dynamic Signatures of Key Aging and AD Processes Using Dynamics Diffusion-Weighted Imaging
使用动力学扩散加权成像绘制关键衰老和 AD 过程的血管旁流体动态特征
- 批准号:
10739365 - 财政年份:2023
- 资助金额:
-- - 项目类别:
CAREER: Weighted Fourier extension estimates and interactions with PDEs and geometric measure theory
职业:加权傅里叶扩展估计以及与偏微分方程和几何测度理论的相互作用
- 批准号:
2237349 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Improving the diagnostic accuracy of breast MRI without contrast agent using the parameters of abbreviated diffusion-weighted image.
利用简化扩散加权图像参数提高无造影剂乳腺 MRI 的诊断准确性。
- 批准号:
23K07211 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
SBE-UKRI: Contextually and probabilistically weighted auditory selective attention: from neurons to networks
SBE-UKRI:上下文和概率加权听觉选择性注意:从神经元到网络
- 批准号:
2414066 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Weighted semigroup approach for Fokker-Planck-Kolmogorov equations
Fokker-Planck-Kolmogorov 方程的加权半群方法
- 批准号:
517982119 - 财政年份:2023
- 资助金额:
-- - 项目类别:
WBP Fellowship














{{item.name}}会员




