Experimental Design-based Weighted Sampling

基于实验设计的加权抽样

基本信息

  • 批准号:
    2310637
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Random sampling is commonly used for inferring quantities of interest of a population. This project aims to develop a deterministic sampling technique that improves upon the existing sampling techniques by introducing weights for each sample. Building on the recent developments of data compression and subsampling algorithms, the new sampling technique has the potential to overcome the computational challenges faced by the existing techniques. The developed techniques are broad and can have applications in many fields of science and engineering, such as uncertainty quantification, Bayesian statistics, simulation, stochastic optimization, machine learning, and numerical analysis, to name a few. The PI will develop software packages to be distributed to the public for free to enable the widespread use of the proposed techniques. The sampling techniques will also be implemented in industries and tested in several engineering applications, which will provide a broad and immediate impact on society. The project also provides research training opportunities for graduate students. The experimental design-based weighted sampling technique is developed by working on three broad classes of problems in statistics: (1) uncertainty quantification, where the probability density is known and fully specified, (2) Bayesian computation, where the probability density is known only up to a proportionality constant, and (3) data compression, where the probability distribution is unknown. The key idea of the proposed technique is to relax the restriction that the samples should follow the underlying distribution of the population. Instead, the samples are optimally generated to improve the estimation of the quantity of interest, and then weights are used for correcting the distributional mismatch. The resulting weighted sample can provide a more robust performance compared to the existing unweighted samples. The project develops new techniques such as optimally weighted quantizers, weighted minimum energy designs, adaptive integration methods using sequential designs, weighted twinning, and supervised data compression techniques using weights. Overall, this project will develop a suite of theoretically sound and computationally efficient techniques for weighted sampling that represents a significant advancement from the existing techniques that focus on generating unweighted samples from the target distribution.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随机抽样通常用于推断总体的感兴趣数量。本项目旨在开发一种确定性抽样技术,通过为每个样本引入权重来改进现有的抽样技术。基于数据压缩和子采样算法的最新发展,新的采样技术有可能克服现有技术所面临的计算挑战。所开发的技术是广泛的,可以在许多科学和工程领域中应用,例如不确定性量化,贝叶斯统计,模拟,随机优化,机器学习和数值分析,仅举几例。PI将开发软件包,免费向公众分发,以便广泛使用拟议的技术。采样技术还将在工业中实施,并在几个工程应用中进行测试,这将对社会产生广泛而直接的影响。该项目还为研究生提供研究培训机会。基于实验设计的加权抽样技术是通过研究统计学中的三大类问题而发展起来的:(1)不确定性量化,其中概率密度是已知的,并且是完全指定的,(2)贝叶斯计算,其中概率密度只知道比例常数,以及(3)数据压缩,其中概率分布是未知的。所提出的技术的关键思想是放松的限制,样本应该遵循的基本分布的人口。相反,最佳地生成样本以改善对感兴趣的量的估计,然后使用权重来校正分布失配。与现有的未加权样本相比,所得到的加权样本可以提供更鲁棒的性能。该项目开发了新技术,如最佳加权量化器,加权最小能量设计,自适应集成方法,使用顺序设计,加权孪生和监督数据压缩技术使用权重。总体而言,该项目将开发一套理论上合理和计算效率高的加权抽样技术,这代表了现有技术的重大进步,这些技术侧重于从目标分布中生成未加权样本。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Roshan Joseph其他文献

Acoustic emission source modeling in a plate using buried moment tensors
使用埋入力矩张量对板中的声发射源进行建模
EVALUATION OF COMPOSITIONAL DISTRIBUTIONAL SEMANTIC MODEL ON QUESTION ANSWERING SYSTEM WITH MULTIPLICATION OPERATOR
乘法问答系统组合分布语义模型评价
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aditya Venkatraman;S. Mohan;Roshan Joseph;D. McDowell;S. Kalidindi
  • 通讯作者:
    S. Kalidindi
A new framework for the assessment of model probabilities of the different crystal plasticity models for lamellar grains in α+β Titanium alloys
评估 α+β 钛合金中层状晶粒不同晶体塑性模型模型概率的新框架
Cloud-Enabled Search for Disparate Healthcare Data: A Case Study
支持云的不同医疗保健数据搜索:案例研究
Limit Kriging
  • DOI:
    10.1198/004017006000000011
  • 发表时间:
    2006-11
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Roshan Joseph
  • 通讯作者:
    Roshan Joseph

Roshan Joseph的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Roshan Joseph', 18)}}的其他基金

Integrating Data- and Model-based Methods to Enable Improved Heart Surgery Planning
集成基于数据和模型的方法以改进心脏手术计划
  • 批准号:
    1921646
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Deterministic Sampling through Energy Minimization
通过能量最小化进行确定性采样
  • 批准号:
    1712642
  • 财政年份:
    2017
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: Physical-Statistical Modeling and Optimization of Cardiovascular System
合作研究:心血管系统的物理统计建模和优化
  • 批准号:
    1266025
  • 财政年份:
    2013
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Metamodel-Based Measurement, Control, and Optimization of Engineered Surfaces
基于元模型的工程表面测量、控制和优化
  • 批准号:
    1030125
  • 财政年份:
    2010
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
An Engineering-Statistical Approach to Predictive Modeling and Robust Optimization with Applications to Machining
预测建模和鲁棒优化的工程统计方法及其在机械加工中的应用
  • 批准号:
    0654369
  • 财政年份:
    2007
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CAREER: Design and Analysis of Experiments for Developing Robust Products and Processes
职业:开发稳健产品和工艺的实验设计和分析
  • 批准号:
    0448774
  • 财政年份:
    2005
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似国自然基金

Applications of AI in Market Design
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研 究基金项目
基于“Design-Build-Test”循环策略的新型紫色杆菌素组合生物合成研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
在噪声和约束条件下的unitary design的理论研究
  • 批准号:
    12147123
  • 批准年份:
    2021
  • 资助金额:
    18 万元
  • 项目类别:
    专项基金项目

相似海外基金

Experimental study on irreversible deterioration mechanism of CFRP-steel bonding system and durability-based design optimization
CFRP-钢粘结体系不可逆劣化机理实验研究及基于耐久性的设计优化
  • 批准号:
    23K13396
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Design of High Entropy Superalloys Using a Hybrid Experimental-Based Machine Learning Approach: Steel Sector Application
使用基于实验的混合机器学习方法设计高熵高温合金:钢铁行业应用
  • 批准号:
    53662
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Study
Information extraction and experimental design in condensed-matter experiments based on high-performance computational statistics
基于高性能计算统计的凝聚态实验信息提取和实验设计
  • 批准号:
    20K20522
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Development and experimental validation of a deep-learning based pipeline for user-centric protein design.
开发和实验验证基于深度学习的管道,用于以用户为中心的蛋白质设计。
  • 批准号:
    EP/S003002/1
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
    Fellowship
Development of a combined mathematical and experimental approach for the design, evaluation and optimization of algae based bio-refinery processes
开发数学和实验相结合的方法来设计、评估和优化基于藻类的生物精炼工艺
  • 批准号:
    1807432
  • 财政年份:
    2016
  • 资助金额:
    $ 25万
  • 项目类别:
    Studentship
DFT-based Design and Experimental Testing of Catalytic Metallic Membranes for Selective N2-
基于 DFT 的选择性 N2- 催化金属膜设计和实验测试
  • 批准号:
    1650259
  • 财政年份:
    2016
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Structure-based design of Anaphase Promoting Complex/Cyclosome (APC/C) inhibitors as leads for drug development: an experimental and computational approach
基于结构的后期促进复合物/环体 (APC/C) 抑制剂的设计作为药物开发的先导:一种实验和计算方法
  • 批准号:
    313437053
  • 财政年份:
    2016
  • 资助金额:
    $ 25万
  • 项目类别:
    Research Grants
Ionic Liquids in the Synthesis and Tuning of Porous Materials: Knowledge-based Design of Properties Using a Combined Experimental and Theoretical Approach
离子液体在多孔材料的合成和调节中:采用实验和理论相结合的方法进行基于知识的性能设计
  • 批准号:
    253301413
  • 财政年份:
    2014
  • 资助金额:
    $ 25万
  • 项目类别:
    Priority Programmes
Extending economic design to non-market settings: An experimental study of mechanism design with intention-based preferences
将经济设计扩展到非市场环境:基于意图偏好的机制设计实验研究
  • 批准号:
    DE140101014
  • 财政年份:
    2014
  • 资助金额:
    $ 25万
  • 项目类别:
    Discovery Early Career Researcher Award
Experimental investigations and performance based design of rack columns and beam-column connections
架柱和梁柱连接的实验研究和基于性能的设计
  • 批准号:
    461638-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 25万
  • 项目类别:
    Engage Grants Program
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了