STIMULATE: Modeling and Automatic Labeling of Hidden Word- Level Events in Spontaneous Speech

刺激:自发语音中隐藏词级事件的建模和自动标记

基本信息

  • 批准号:
    9619921
  • 负责人:
  • 金额:
    $ 77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-03-01 至 2006-02-28
  • 项目状态:
    已结题

项目摘要

Most current NLP techniques expect input resembling read or constrained speech. When applied to spontaneous speech, such techniques encounter two serious difficulties. First, spontaneous speech contains surface phenomena relating to non-propositional aspects of the input, such as disfluencies and discourse markers. Second, spontaneous speech lacks overt punctuation for segmenting the input into meaningful units. For effective NLP, such phenomena should be overtly marked in the input; current speech recognizers, however, produce only a raw sequence of words. The goal of this project is to augment speech recognition models to output word sequences annotated for these phenomena, termed "Hidden Word-Level Events" (HWEs). New models are developed to allow recognition of HWEs to occur in tandem with word recognition. HWE recognition is based on a combination of acoustic and language models, extending the standard components found in current systems. The new models also capture prosodic characteristics of HWEs, including intonation and duration patterns. The prosodic information is combined with statistical language models describing the distribution of HWEs in relation to lexical and syntactic units. Results should significantly enhance our ability to process spontaneous speech automatically; the research will also further our basic understanding of spontaneous speech.
大多数当前的自然语言处理技术期望类似于阅读或受限语音的输入。当应用于自发演讲时,这种技术会遇到两个严重的困难。首先,自发言语包含与输入的非命题方面相关的表面现象,如不流利和话语标记语。其次,自发讲话缺乏明显的标点符号,无法将输入分割成有意义的单元。对于有效的自然语言处理,这些现象应该在输入中公开标记;然而,目前的语音识别器只产生原始的单词序列。该项目的目标是增强语音识别模型,以输出为这些现象注释的单词序列,称为“隐藏词级事件”(HWES)。开发了新的模型,以允许HWE的识别与单词识别同时进行。HWE识别基于声学和语言模型的组合,扩展了当前系统中的标准组件。新模型还捕捉了HWE的韵律特征,包括语调和时长模式。韵律信息与描述HWE相对于词汇和句法单位的分布的统计语言模型相结合。研究结果将显著提高我们自动处理自发言语的能力;这项研究也将加深我们对自发言语的基本理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Elizabeth Shriberg其他文献

Bootstrapping Domain Detection Using Query Click Logs for New Domains
使用新域的查询点击日志引导域检测
  • DOI:
    10.21437/interspeech.2011-276
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dilek Z. Hakkani;Gökhan Tür;Larry Heck;Elizabeth Shriberg
  • 通讯作者:
    Elizabeth Shriberg
Can Prosody Aid the Automatic Processing of Multi-Party Meetings? Evidence from Predicting Punctuation, Disfluencies, and Overlapping Speech
Prosody 可以帮助自动处理多方会议吗?
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Elizabeth Shriberg;A. Stolcke;D. Baron
  • 通讯作者:
    D. Baron
Spontaneous speech: how people really talk and why engineers should care
  • DOI:
    10.21437/interspeech.2005-3
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Elizabeth Shriberg
  • 通讯作者:
    Elizabeth Shriberg
Confidence Estimation for Speech Emotion Recognition Based on the Relationship Between Emotion Categories and Primitives
基于情感类别与基元关系的语音情感识别置信度估计
Prosody Modeling for Automatic Speech Understanding: An Overview of Recent Research at SRI
自动语音理解的韵律建模:SRI 最新研究概述
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Elizabeth Shriberg;A. Stolcke
  • 通讯作者:
    A. Stolcke

Elizabeth Shriberg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Elizabeth Shriberg', 18)}}的其他基金

EAGER: A Corpus of Aligned Speech and ANS Sensor Data
EAGER:对齐语音和 ANS 传感器数据的语料库
  • 批准号:
    1449202
  • 财政年份:
    2014
  • 资助金额:
    $ 77万
  • 项目类别:
    Standard Grant
TalkPrinting: New Features and Models for Automatic Speaker Recognition
TalkPrinting:自动说话人识别的新功能和模型
  • 批准号:
    0544682
  • 财政年份:
    2005
  • 资助金额:
    $ 77万
  • 项目类别:
    Standard Grant
Modeling Disfluencies in Spontaneous Speech
模拟自发言语的不流畅
  • 批准号:
    9314967
  • 财政年份:
    1994
  • 资助金额:
    $ 77万
  • 项目类别:
    Continuing Grant
NSF-NATO Postdoctoral Fellowhips
NSF-北约博士后奖学金
  • 批准号:
    9353732
  • 财政年份:
    1993
  • 资助金额:
    $ 77万
  • 项目类别:
    Fellowship Award

相似国自然基金

Galaxy Analytical Modeling Evolution (GAME) and cosmological hydrodynamic simulations.
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Establishing a Flexible and Reliable Automatic Approximate Inference Method to Accelerate the Social Execution of Statistical Modeling.
建立灵活可靠的自动近似推理方法,加速统计建模的社会化执行。
  • 批准号:
    21J11859
  • 财政年份:
    2021
  • 资助金额:
    $ 77万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Research on an automatic feedback generation method for learners to support state transition modeling learning
支持状态转移建模学习的学习者自动反馈生成方法研究
  • 批准号:
    20K03146
  • 财政年份:
    2020
  • 资助金额:
    $ 77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Modeling of spatio-temporal dynamics of neuropil signals and its application to automatic cell detectors
神经纤维信号时空动力学建模及其在自动细胞检测器中的应用
  • 批准号:
    19H04203
  • 财政年份:
    2019
  • 资助金额:
    $ 77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Automatic border modeling of denture using artificial intelligence and air-assisted intraoral scanner
使用人工智能和空气辅助口内扫描仪自动进行义齿边界建模
  • 批准号:
    19K22720
  • 财政年份:
    2019
  • 资助金额:
    $ 77万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Automatic control logic utilizing sparse modeling for natural ventilation operation
利用稀疏模型进行自然通风运行的自动控制逻辑
  • 批准号:
    19K04741
  • 财政年份:
    2019
  • 资助金额:
    $ 77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Structural modeling and automatic generation of Japanese text
日语文本的结构建模和自动生成
  • 批准号:
    18H03285
  • 财政年份:
    2018
  • 资助金额:
    $ 77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
ExtraPeak - Automatic Performance Modeling of HPC Applications with Multiple Model Parameters
ExtraPeak - 具有多个模型参数的 HPC 应用程序的自动性能建模
  • 批准号:
    323299120
  • 财政年份:
    2017
  • 资助金额:
    $ 77万
  • 项目类别:
    Research Grants
Modeling mental process of reading from human's automatic behavior against typos
根据人类针对拼写错误的自动行为来模拟阅读的心理过程
  • 批准号:
    16K00321
  • 财政年份:
    2016
  • 资助金额:
    $ 77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
RI: Small: Modeling Idiosyncrasies of Speech for Automatic Spoken Language Processing
RI:小:为自动口语处理建模语音特质
  • 批准号:
    1617176
  • 财政年份:
    2016
  • 资助金额:
    $ 77万
  • 项目类别:
    Standard Grant
Machine learning modeling of automatic detection of failure modes in IMRT patient-specific QA
IMRT 患者特定 QA 中故障模式自动检测的机器学习模型
  • 批准号:
    16K19226
  • 财政年份:
    2016
  • 资助金额:
    $ 77万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了