Excitation Dynamics of Random Magnetic Systems
随机磁系统的激励动力学
基本信息
- 批准号:9623195
- 负责人:
- 金额:$ 21.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1996
- 资助国家:美国
- 起止时间:1996-07-01 至 1999-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9623195 Orbach This project deals with the experimental study of the microscopic order-parameter of spin-glasses. This here-to- fore solely theoretical concept controls the dynamics of these complex systems. The results of this study will have relevance to the fields of evolution, protein folding, neural networks, and other physical phenomena which obey hierarchical structure in the arrangement of their states. The parameter of interest is the non-linear magnetic field dependence of the zero-field-cooled magnetization, Mzfc. This quantity will be determined over a range of temperatures, from very low values up to the vicinity of the spin-glass temperature, Tg. Using a theoretical description developed by the investigators, the derivative of the logarithm of Mzfc with respect to the magnetic field will generate an explicit form for P(q), the Parisi order- parameter for spin-glasses. Using other experimental "calipers", the study will attempt to extract the branching ratios for the hierarchical tree which governs spin-glass behavior. %%% Random magnetic systems, in particular, spin-glasses, are measurable representations of a wide variety of behavior found in nature. Their properties can shed light on such diverse fields as human evolution, the behavior of proteins in solution, and the functioning of the human brain. It appears that these seemingly random structures in fact obey very constricted geometries, an immense simplification. This project has devised experiments which should enable the extraction of the underlying geometry by measuring the magnetic properties of dilute magnetic alloys. The materials will be investigated over a wide range of temperature and magnetic field with the objective of extracting the microscopic parameters which define their dynamic behavior. This will have relevance not only to this important class of physical s ystems, but also to a wide variety of natural phenomena. ***
小行星9623195 本项目是关于自旋玻璃微观序参量的实验研究。这个迄今为止唯一的理论概念控制着这些复杂系统的动力学。这项研究的结果将有相关的领域的进化,蛋白质折叠,神经网络,和其他物理现象,服从层次结构的安排,他们的状态。 感兴趣的参数是零场冷却磁化的非线性磁场依赖性Mzfc。 这 数量将根据 一 范围 温度,从非常低的值到旋转玻璃温度Tg附近。使用研究人员开发的理论描述,Mzfc的对数相对于磁场的导数将生成帕里西序参数P(q)的显式形式 为 旋转眼镜 使用其他 实验“卡尺”,该研究将试图提取支配自旋玻璃行为的层次树的分支比。 随机磁系统,特别是自旋玻璃,是自然界中发现的各种行为的可测量表示。它们的特性可以揭示人类进化,蛋白质在溶液中的行为以及人类大脑的功能等不同领域。 看起来,这些看似随机的结构实际上遵循非常狭窄的几何形状,这是一个巨大的简化。该项目设计了一些实验,通过测量稀磁合金的磁特性,可以提取基本的几何形状。这些材料将在很宽的温度和磁性范围内进行研究。 目的是提取 定义其动态行为的微观参数。 这不仅与这一类重要的物理系统有关,而且与各种各样的自然现象有关。 ***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Raymond Orbach其他文献
Raymond Orbach的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Raymond Orbach', 18)}}的其他基金
Some Theoretical Studies of the Properties of Condensed Matter
凝聚态物质性质的一些理论研究
- 批准号:
8805443 - 财政年份:1988
- 资助金额:
$ 21.28万 - 项目类别:
Continuing Grant
Excitation Dynamics of Random Systems and Non-Equilibrium Superconductivity
随机系统的激发动力学和非平衡超导
- 批准号:
8618968 - 财政年份:1987
- 资助金额:
$ 21.28万 - 项目类别:
Continuing Grant
Development of a High-Field SQUID Magnetometer (Materials Research)
高场 SQUID 磁力计的开发(材料研究)
- 批准号:
8612022 - 财政年份:1986
- 资助金额:
$ 21.28万 - 项目类别:
Continuing Grant
Theoretical Studies of the Properties of Condensed Matter (Materials Research)
凝聚态物质性质的理论研究(材料研究)
- 批准号:
8412898 - 财政年份:1984
- 资助金额:
$ 21.28万 - 项目类别:
Continuing Grant
U.S. - France Cooperative Research: Dynamics of Spin Glasses
美法合作研究:旋转玻璃动力学
- 批准号:
8312985 - 财政年份:1984
- 资助金额:
$ 21.28万 - 项目类别:
Standard Grant
Excitation Dynamics of Random Systems (Materials Research)
随机系统的激励动力学(材料研究)
- 批准号:
8121394 - 财政年份:1982
- 资助金额:
$ 21.28万 - 项目类别:
Continuing Grant
16th International Conference on Low Temperature Physics; August 19-26, 1981 at the University of California, Los Angeles
第十六届国际低温物理学会议;
- 批准号:
8014971 - 财政年份:1980
- 资助金额:
$ 21.28万 - 项目类别:
Standard Grant
Group Travel Grant For U.S. Participants in International Conference on Physics in One Dimension; Fribourg, Switzer- Land, Aug 25-29, 1980
为参加国际一维物理学会议的美国参与者提供团体旅行补助金;
- 批准号:
7921425 - 财政年份:1980
- 资助金额:
$ 21.28万 - 项目类别:
Standard Grant
An Experimental Study of Spin Glasses and Dynamics of Superconductors
自旋玻璃和超导体动力学的实验研究
- 批准号:
7827129 - 财政年份:1979
- 资助金额:
$ 21.28万 - 项目类别:
Continuing Grant
Some Theoretical Studies of the Properties of Condensed Matter
凝聚态物质性质的一些理论研究
- 批准号:
7810312 - 财政年份:1978
- 资助金额:
$ 21.28万 - 项目类别:
Continuing Grant
相似国自然基金
β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
- 批准号:n/a
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Study of physical measures for random non-hyperbolic dynamics
随机非双曲动力学的物理测量研究
- 批准号:
23K03188 - 财政年份:2023
- 资助金额:
$ 21.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Asymptotic Problems in Random Dynamics
随机动力学中的渐近问题
- 批准号:
2246704 - 财政年份:2023
- 资助金额:
$ 21.28万 - 项目类别:
Continuing Grant
Spatio-temporal dynamics of general diffusive processes in heterogeneous and random environments
异构随机环境中一般扩散过程的时空动力学
- 批准号:
RGPIN-2018-04371 - 财政年份:2022
- 资助金额:
$ 21.28万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of maps with memory, random maps, multi-valued maps and the geometric Markov Renewal processes
具有记忆的映射动力学、随机映射、多值映射和几何马尔可夫更新过程
- 批准号:
RGPIN-2017-05321 - 财政年份:2022
- 资助金额:
$ 21.28万 - 项目类别:
Discovery Grants Program - Individual
Random Structures and Dynamics Arising from Questions in Social, Biological, and Physical Sciences
社会、生物和物理科学问题引起的随机结构和动力学
- 批准号:
2154564 - 财政年份:2022
- 资助金额:
$ 21.28万 - 项目类别:
Standard Grant
Collaborative Research: Population Dynamics in Random Environments: Theory and Approximation
合作研究:随机环境中的种群动态:理论与近似
- 批准号:
2147903 - 财政年份:2021
- 资助金额:
$ 21.28万 - 项目类别:
Standard Grant
Statistics and dynamics of conditioned random systems
条件随机系统的统计和动力学
- 批准号:
2614106 - 财政年份:2021
- 资助金额:
$ 21.28万 - 项目类别:
Studentship
Dynamics of maps with memory, random maps, multi-valued maps and the geometric Markov Renewal processes
具有记忆的映射动力学、随机映射、多值映射和几何马尔可夫更新过程
- 批准号:
RGPIN-2017-05321 - 财政年份:2021
- 资助金额:
$ 21.28万 - 项目类别:
Discovery Grants Program - Individual
Spatio-temporal dynamics of general diffusive processes in heterogeneous and random environments
异构随机环境中一般扩散过程的时空动力学
- 批准号:
RGPIN-2018-04371 - 财政年份:2021
- 资助金额:
$ 21.28万 - 项目类别:
Discovery Grants Program - Individual
Dynamics in Random Media: from Homogenization to Stochasticity
随机介质中的动力学:从同质化到随机性
- 批准号:
2203007 - 财政年份:2021
- 资助金额:
$ 21.28万 - 项目类别:
Continuing Grant