Random Structures and Dynamics Arising from Questions in Social, Biological, and Physical Sciences
社会、生物和物理科学问题引起的随机结构和动力学
基本信息
- 批准号:2154564
- 负责人:
- 金额:$ 24.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Analysis of random structures and stochastic dynamics has been a topic of interest across many disciplines. Study of various spatial and non-spatial random graph models, stochastic spatial models, and stochastic processes taking place on random graphs, and network-based algorithms are key to these efforts. Although these problems have received significant attention in the literature, rigorous analysis and foundational work is needed in many areas to have reliable results and to cope with upcoming challenges and the complexity of real-world data. This research addresses several theoretical and some empirical challenges involving a wide class of questions arising in physics, social sciences, and biosciences. Specific research areas that would benefit from this research include determining functional connectivity within neural networks in brains, pandemic management, pest control strategies, and the evolution of social interactions. This research will provide new insights into the mechanistic underpinning of the underlying complex structures and associated covariates on different social and biological phenomena which are the central objective of research in many disciplines. This analysis will help scientists to understand experimental and observational data in biosciences and social sciences and develop suitable control strategies. Community detection for temporal networks would enhance the understanding of brain function across multiple spatial and temporal scales. The proposed work also has significant potential to increase our capacity to develop efficient and cost-effective intervention strategies to mitigate some of the most potentially damaging and fastest-spreading invasive epidemics of humans, livestock, and plants (including wheat, soybean, citrus, and hop). To guarantee that the results are relevant to scientists, parts of the project will be carried out in collaboration with scientists of different fields. Presentations on the relevant research will be given in stakeholder meetings and community outreach events. Undergraduate and graduate students will be involved in the research activities at the intersection of mathematics and other disciplines. Opportunities to learn theoretical and empirical analysis of various probabilistic models, and interactions with scientists will enhance their ability to work at the interface between mathematics and various related areas. One of the primary goals of this project is to understand and analyze different structural properties and limiting behavior of various spatial and non-spatial random graph models, and several stochastic dynamics taking place on graphs. The random graph models include open clusters of percolation and related models, multi-layer, and temporal network models. Percolation models originated in the physics literature as a model for a porous medium. There are many useful tools and a well-developed theory for studying the percolation models on two-dimensional lattices. However, for higher dimensional lattices, several key aspects, including the near-critical regime and the behavior of the model in subgraphs such as sectors, are poorly understood. This project will address some of these issues. Multi-layer networks are natural models for numerous datasets arising in various scientific fields, including genomics, biomedical sciences, neuroscience, economics, sociology, ecology, epidemiology, and technological networks. Depending on the context, various parametric probabilistic models have been used for the formation of multi-layer, multiplex, and temporal networks. For the estimation of those parameters from data, and for model selection purposes, it is very important to understand the behavior of some key functionals (e.g., subgraph counts or the concentration of aggregated adjacency matrices). These functionals will be analyzed for a wide variety of temporal network models, particularly where the snapshots have some correlation structure. The stochastic dynamics include some important variants of the standard models for infection spreading and opinion evolution in presence of additional restrictions (e.g., temporary isolation). The project also includes studying several theoretical and empirical aspects (e.g., bounds for detectability threshold, efficient detection algorithms) of various detection problems, which includes detection of anomalous structures, community detection from a correlated sequence of networks, detection of the source of the epidemic. The rigorous analyses of the models discussed above will require the development of novel mathematical techniques and research tools. These techniques and tools would be instrumental to obtain a deeper understanding of a broader class of random structures and dynamics arising in multiple scientific disciplines.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随机结构和随机动力学的分析一直是许多学科感兴趣的话题。研究各种空间和非空间随机图模型,随机空间模型,随机图上发生的随机过程,以及基于网络的算法是这些努力的关键。虽然这些问题在文献中得到了极大的关注,但在许多领域需要进行严格的分析和基础工作,以获得可靠的结果,并科普即将到来的挑战和现实世界数据的复杂性。这项研究解决了几个理论和一些经验的挑战,涉及广泛的一类问题,在物理学,社会科学和生物科学。将从这项研究中受益的具体研究领域包括确定大脑神经网络内的功能连接,流行病管理,害虫控制策略以及社会互动的演变。这项研究将为不同社会和生物现象的潜在复杂结构和相关协变量的机械基础提供新的见解,这些现象是许多学科研究的中心目标。这种分析将有助于科学家了解生物科学和社会科学的实验和观测数据,并制定适当的控制战略。 时间网络的社区检测将增强对多个空间和时间尺度上的大脑功能的理解。拟议的工作还具有显著的潜力,可以提高我们制定有效和具有成本效益的干预策略的能力,以减轻人类,牲畜和植物(包括小麦,大豆,柑橘和啤酒花)的一些最具潜在破坏性和传播最快的入侵性流行病。 为了确保研究结果与科学家相关,该项目的部分内容将与不同领域的科学家合作进行。将在利益攸关方会议和社区外联活动中介绍相关研究。本科生和研究生将参与数学和其他学科交叉的研究活动。学习各种概率模型的理论和实证分析的机会,以及与科学家的互动将提高他们在数学和各种相关领域之间的接口工作的能力。 该项目的主要目标之一是理解和分析各种空间和非空间随机图模型的不同结构特性和限制行为,以及图上发生的几种随机动力学。随机图模型包括开簇渗流及相关模型、多层网络模型和时间网络模型。渗流模型起源于物理学文献中,作为多孔介质的模型。对于二维格子上的渗流模型的研究,有许多有用的工具和成熟的理论。然而,对于高维晶格,几个关键方面,包括近临界状态和模型在子图(如扇区)中的行为,还知之甚少。本项目将解决其中一些问题。多层网络是各种科学领域中出现的众多数据集的自然模型,包括基因组学,生物医学科学,神经科学,经济学,社会学,生态学,流行病学和技术网络。根据上下文,各种参数概率模型已被用于形成多层,多路复用和时间网络。为了从数据中估计这些参数,以及为了模型选择的目的,理解一些关键泛函的行为是非常重要的(例如,子图计数或聚合邻接矩阵的集中度)。这些泛函将分析各种各样的时间网络模型,特别是在快照有一些相关结构。随机动态包括在存在额外限制的情况下用于感染传播和意见演变的标准模型的一些重要变体(例如,暂时隔离)。该项目还包括研究几个理论和经验方面(例如,可检测性阈值的界限,有效的检测算法)的各种检测问题,其中包括检测异常结构,社区检测从相关序列的网络,检测的来源的流行病。对上述模型的严格分析将需要开发新的数学技术和研究工具。这些技术和工具将有助于更深入地了解多个科学学科中出现的更广泛的随机结构和动态。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Changes over Time in Association Patterns between Estimated COVID-19 Case Fatality Rates and Demographic, Socioeconomic and Health Factors in the US States of Florida and New York
美国佛罗里达州和纽约州估计的 COVID-19 病死率与人口、社会经济和健康因素之间的关联模式随时间的变化
- DOI:10.3390/covid2100102
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Joshi, Mansi;Di, Yanming;Bhattacharyya, Sharmodeep;Chatterjee, Shirshendu
- 通讯作者:Chatterjee, Shirshendu
Detection of Temporal Shifts in Semantics Using Local Graph Clustering
- DOI:10.3390/make5010008
- 发表时间:2023-01
- 期刊:
- 影响因子:0
- 作者:N. Hwang;S. Chatterjee;Yanming Di;Sharmodeep Bhattacharyya
- 通讯作者:N. Hwang;S. Chatterjee;Yanming Di;Sharmodeep Bhattacharyya
The effect of avoiding known infected neighbors on the persistence of a recurring infection process
- DOI:10.1214/22-ejp836
- 发表时间:2020-11
- 期刊:
- 影响因子:1.4
- 作者:S. Chatterjee;David J Sivakoff;M. Wascher
- 通讯作者:S. Chatterjee;David J Sivakoff;M. Wascher
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shirshendu Chatterjee其他文献
Shirshendu Chatterjee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shirshendu Chatterjee', 18)}}的其他基金
Mathematical Models for Understanding the Effect of Long-Range Interactions and Intervention Measures on the Spread of Epidemics
用于理解远程相互作用和干预措施对流行病传播影响的数学模型
- 批准号:
1812148 - 财政年份:2018
- 资助金额:
$ 24.98万 - 项目类别:
Continuing Grant
相似海外基金
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
- 批准号:
2415119 - 财政年份:2024
- 资助金额:
$ 24.98万 - 项目类别:
Continuing Grant
Collaborative Research: Nonlinear Dynamics and Wave Propagation through Phononic Tunneling Junctions based on Classical and Quantum Mechanical Bistable Structures
合作研究:基于经典和量子机械双稳态结构的声子隧道结的非线性动力学和波传播
- 批准号:
2423960 - 财政年份:2024
- 资助金额:
$ 24.98万 - 项目类别:
Standard Grant
Strategies for predicting functionality of polymer electrolyte membranes based on dynamics and hierarchical structures
基于动力学和分层结构的聚合物电解质膜功能预测策略
- 批准号:
24K08091 - 财政年份:2024
- 资助金额:
$ 24.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
ERI: Revealing the Reconfiguration Dynamics of Lipid Bilayer and Its Hydration Structures with Nanoscale Resolution during Electroporation
ERI:以纳米级分辨率揭示电穿孔过程中脂质双层的重构动力学及其水合结构
- 批准号:
2302013 - 财政年份:2023
- 资助金额:
$ 24.98万 - 项目类别:
Standard Grant
Stable structures and chaotic dynamics in fluid flows
流体流动中的稳定结构和混沌动力学
- 批准号:
EP/X020886/1 - 财政年份:2023
- 资助金额:
$ 24.98万 - 项目类别:
Research Grant
Structures and dynamics of ABC transporters MsbA and LptB2FG in working with LptC during transport activities
ABC转运蛋白MsbA和LptB2FG在运输活动中与LptC合作的结构和动态
- 批准号:
23K05713 - 财政年份:2023
- 资助金额:
$ 24.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Macroscopic structures governed by electron dynamics in non-equilibrium plasmas
非平衡等离子体中电子动力学控制的宏观结构
- 批准号:
22H01195 - 财政年份:2022
- 资助金额:
$ 24.98万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Combinatorial Microscopies: Platforms for Probing Molecular and Cellular Dynamics and Structures
组合显微镜:探测分子和细胞动力学和结构的平台
- 批准号:
RGPIN-2022-04837 - 财政年份:2022
- 资助金额:
$ 24.98万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear dynamics of shell and plate structures, multi-dimensional and multi-field applications
壳板结构非线性动力学、多维多领域应用
- 批准号:
RGPIN-2018-06609 - 财政年份:2022
- 资助金额:
$ 24.98万 - 项目类别:
Discovery Grants Program - Individual
Dynamics and Vibrations of Cable-Harnessed Structures Motivated by Space Applications
空间应用驱动的线束结构的动力学和振动
- 批准号:
RGPIN-2022-03338 - 财政年份:2022
- 资助金额:
$ 24.98万 - 项目类别:
Discovery Grants Program - Individual