Career: Adaptation and Learning in Distributed Systems Using Neural Networks

职业:使用神经网络的分布式系统的适应和学习

基本信息

  • 批准号:
    9623971
  • 负责人:
  • 金额:
    $ 33.22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1996
  • 资助国家:
    美国
  • 起止时间:
    1996-08-01 至 2001-07-31
  • 项目状态:
    已结题

项目摘要

9623971 Mukhopadhyay Distributed information-sharing computer networks and automotive systems are two examples of an increasing number of applications areas in engineering and computing systems which require collaborative interaction between physically distributed decision-makers and controllers. Such distributed applications frequently give rise to nonlinear distributed decision and control problems in the presence of uncertainties such as the effects of the local decisions on the over-all objective and incomplete system state information. Artificial neural networks in the past have proven effective in adaptive realization of nonlinear decision-making and control rules. In order to apply them to distributes applications, new interconnection models as well as adaptation and learning methods are needed to cope with distributed sources of uncertainty such as those mentioned above. Utilizing results form large-scale systems theory and current research on multiple neural networks, the proposed research will investigate several closely-related distributed interconnection models of neural networks. Constructive methods will be found to determine local approximations to an overall performance function under different conditions on the completeness of local measurements. These local performance functions, in turn, will yield adaptive methods for realization of nonlinear decision and control rules using neural networks. The model and methods derived will be applied to problems in the application areas of information sharing over computer networks and automotive control.
分布式信息共享计算机网络和汽车系统是工程和计算系统中越来越多的应用领域的两个例子,这些应用领域需要物理上分布的决策者和控制器之间的协作交互。 这样的分布式应用经常会引起非线性分布式决策和控制问题的存在的不确定性,如局部决策的整体目标和不完整的系统状态信息的影响。 人工神经网络在过去已被证明是有效的非线性决策和控制规则的自适应实现。 为了将它们应用到分布式应用中,需要新的互连模型以及适应和学习方法来科普上述不确定性的分布式来源。 利用大系统理论和当前多神经网络的研究成果,本研究将研究几种密切相关的神经网络分布式互连模型。 建设性的方法将被发现,以确定局部近似的整体性能函数在不同的条件下的局部测量的完整性。 这些局部性能函数,反过来,将产生自适应方法实现非线性决策和控制规则,使用神经网络。 所导出的模型和方法将应用于计算机网络信息共享和汽车控制等应用领域的问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Snehasis Mukhopadhyay其他文献

Homogeneous Agent-Based Distributed Information Filtering
COBioSIFTER – A CORBA-Based Distributed Multi-Agent Biological Information Management System
A bidding mechanism for Web-based agents involved in information classification
  • DOI:
    10.1023/a:1019215815209
  • 发表时间:
    1998-01-01
  • 期刊:
  • 影响因子:
    3.400
  • 作者:
    Rajeev R. Raje;Snehasis Mukhopadhyay;Michael Boyles;Artur Papiez;Nila Patel;Mathew Palakal;Javed Mostafa
  • 通讯作者:
    Javed Mostafa

Snehasis Mukhopadhyay的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Snehasis Mukhopadhyay', 18)}}的其他基金

Collaborative Research: Mutual Learning: A Systems Theoretic Investigation
协作研究:相互学习:系统理论研究
  • 批准号:
    1930606
  • 财政年份:
    2019
  • 资助金额:
    $ 33.22万
  • 项目类别:
    Standard Grant
Fast Reinforcement Learning Using Multiple Models and State Decomposition
使用多个模型和状态分解的快速强化学习
  • 批准号:
    1407925
  • 财政年份:
    2014
  • 资助金额:
    $ 33.22万
  • 项目类别:
    Standard Grant
ITR: An Active, Personalized, Adaptive, Multi-format Biological Information Delivery System
ITR:主动、个性化、自适应、多格式生物信息传递系统
  • 批准号:
    0081944
  • 财政年份:
    2000
  • 资助金额:
    $ 33.22万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: SWIFT: AI-based Sensing for Improved Resiliency via Spectral Adaptation with Lifelong Learning
合作研究:SWIFT:基于人工智能的传感通过频谱适应和终身学习提高弹性
  • 批准号:
    2229471
  • 财政年份:
    2023
  • 资助金额:
    $ 33.22万
  • 项目类别:
    Standard Grant
Collaborative Research: SWIFT: AI-based Sensing for Improved Resiliency via Spectral Adaptation with Lifelong Learning
合作研究:SWIFT:基于人工智能的传感通过频谱适应和终身学习提高弹性
  • 批准号:
    2229473
  • 财政年份:
    2023
  • 资助金额:
    $ 33.22万
  • 项目类别:
    Standard Grant
Collaborative Research: SLES: Bridging offline design and online adaptation in safe learning-enabled systems
协作研究:SLES:在安全的学习系统中桥接离线设计和在线适应
  • 批准号:
    2331880
  • 财政年份:
    2023
  • 资助金额:
    $ 33.22万
  • 项目类别:
    Standard Grant
Collaborative Research: SLES: Bridging offline design and online adaptation in safe learning-enabled systems
协作研究:SLES:在安全的学习系统中桥接离线设计和在线适应
  • 批准号:
    2331881
  • 财政年份:
    2023
  • 资助金额:
    $ 33.22万
  • 项目类别:
    Standard Grant
Adaptation of virtual group interventions to promote resilience among English and Spanish speaking parents of children with Learning and Attentional Disabilities (LAD)
采用虚拟团体干预措施,以提高学习和注意力障碍(LAD)儿童的英语和西班牙语家长的适应力
  • 批准号:
    10848137
  • 财政年份:
    2023
  • 资助金额:
    $ 33.22万
  • 项目类别:
SWIFT-SAT: Network Adaptation Based on Physics-Inspired Learning Framework for Radio Coexistence of Terrestrial and Satellite Information Systems
SWIFT-SAT:基于物理启发的学习框架的网络适应地面和卫星信息系统的无线电共存
  • 批准号:
    2332760
  • 财政年份:
    2023
  • 资助金额:
    $ 33.22万
  • 项目类别:
    Standard Grant
Collaborative Research: SWIFT: AI-based Sensing for Improved Resiliency via Spectral Adaptation with Lifelong Learning
合作研究:SWIFT:基于人工智能的传感通过频谱适应和终身学习提高弹性
  • 批准号:
    2229472
  • 财政年份:
    2023
  • 资助金额:
    $ 33.22万
  • 项目类别:
    Standard Grant
Machine Learning-Aided Solutions for Efficient Planning, Design, Operation and Adaptation of Beyond 5G Wireless Networks
用于高效规划、设计、运营和适应超 5G 无线网络的机器学习辅助解决方案
  • 批准号:
    RGPIN-2022-03798
  • 财政年份:
    2022
  • 资助金额:
    $ 33.22万
  • 项目类别:
    Discovery Grants Program - Individual
Machine Learning-Based Adaptation of Data Sampling and Reconstruction for Efficient Dynamic MRI
基于机器学习的数据采样和重建适应高效动态 MRI
  • 批准号:
    10705033
  • 财政年份:
    2022
  • 资助金额:
    $ 33.22万
  • 项目类别:
CAREER: CAS- Climate: Climate Adaptation Pathways in Eco-Hydrologic Systems with Physics-Informed Machine Learning
职业:CAS-气候:基于物理的机器学习在生态水文系统中的气候适应途径
  • 批准号:
    2144332
  • 财政年份:
    2022
  • 资助金额:
    $ 33.22万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了