Statistical Mechanics of Thermoreversible Gelation

热可逆凝胶化的统计力学

基本信息

  • 批准号:
    9624596
  • 负责人:
  • 金额:
    $ 29.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1996
  • 资助国家:
    美国
  • 起止时间:
    1996-04-01 至 2001-03-31
  • 项目状态:
    已结题

项目摘要

Grzegorz Szamel is supported by a Faculty Early Career Development Award in the Theoretical and Computational Chemistry Program to develop a theoretical understanding of thermoreversible polymer gelation and the properties of thermoreversible gels. The specific problems to be studied are: 1) existence and properties of a thermodynamic transition underlying the observed gelation transition; 2) structure of the sol and gel phases; 3) elastic properties of the gel phase; and 4) viscoelastic properties of the sol and gel phases. The method to be used is a generalization of a recent statistical mechanical approach to rubber vulcanization (formation of a permanent polymer network) to the case of reversible crosslinking. Specifically, a statistical mechanical theory of chemical association will be used to describe reversible bonding of specific monomers distributed randomly along polymer chains. A replication approach will be used to facilitate averaging over the positions of specific monomers. Finally, an order parameter field (related to frozen density fluctuations) will be introduced, and an effective free energy functional will be derived. The free energy functional will be analyzed using methods similar to those used in the study of the vulcanization transition. The goal of the education plan is to teach students the value and significance of quantitative reasoning in physical chemistry, and chemistry in general. In particular, recitation classes will be introduced into teaching the physical chemistry courses in order to improve student's ability to solve chemical problems using the relevant mathematical formalism. Moreover, a new course on mathematical and computational methods for chemists will be instituted in order to expose students to the applications of numerical and simulational methods in chemistry. Polymer gels have attracted a lot of interest because of the wealth of their potential practical applications. Examples include drug delivery devices, chemical valves and sensors, and magnetic resonance monitoring agents. Their properties can change drastically in response to external stimuli such as temperature, electric field, or light. Szamel's research concentrates on one class of polymer gels, thermoreversible gels. These gels originate from reversible crosslinking of polymeric systems. These gels are reversible, i.e. they liquify upon heating, and are regenerated upon cooling.
Grzegorz Szamel在理论和计算化学项目中获得了教师早期职业发展奖,以发展对热可逆性聚合物凝胶化和热可逆性凝胶特性的理论理解。需要研究的具体问题有:1)观察到的胶凝转变背后存在热力学转变及其性质;2)溶胶和凝胶相结构;3)凝胶相的弹性性能;4)溶胶相和凝胶相的粘弹性。所使用的方法是对可逆交联情况下橡胶硫化(形成永久聚合物网络)的最新统计力学方法的推广。具体来说,化学结合的统计力学理论将用于描述沿聚合物链随机分布的特定单体的可逆键。一种复制方法将被用来简化对特定单体位置的平均。最后,将引入一个序参量场(与冻结密度波动有关),并推导出有效的自由能泛函。自由能泛函将使用与研究硫化转变类似的方法进行分析。该教育计划的目标是让学生了解定量推理在物理化学和一般化学中的价值和意义。特别是在物理化学课程中引入复习课,提高学生运用相关数学形式解决化学问题的能力。此外,还将开设一门新的化学数学和计算方法课程,使学生接触到数值和模拟方法在化学中的应用。聚合物凝胶由于其丰富的潜在实际应用而引起了人们的极大兴趣。例子包括药物输送装置,化学阀门和传感器,以及磁共振监测剂。它们的性质会随着外界刺激(如温度、电场或光)的变化而急剧变化。Szamel的研究集中在一类聚合物凝胶上,即热可逆凝胶。这些凝胶源于聚合物体系的可逆交联。这些凝胶是可逆的,即加热时液化,冷却时再生。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Grzegorz Szamel其他文献

Transverse forces and glassy liquids in infinite dimensions
无限维度的横向力和玻璃状液体
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Federico Ghimenti;Ludovic Berthier;Grzegorz Szamel;F. van Wijland
  • 通讯作者:
    F. van Wijland
Simulation of a free-fall droplet: A Study on the Feasibility of the Immersed Boundary Method in the Atmospheric Science
自由落体液滴模拟:浸没边界法在大气科学中的可行性研究
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Grzegorz Szamel;Elijah Flenner and Hisao Hayakawa;岡英太郎・根田昌典・植原量行・川合義美・轡田邦夫;Ong Chia Rui and Hiroaki Miura
  • 通讯作者:
    Ong Chia Rui and Hiroaki Miura
Breakdown of a renormalized perturbation expansion around mode-coupling theory of the glass transition
围绕玻璃化转变模耦合理论的重正化微扰展开的分解
  • DOI:
    10.1209/0295-5075/103/56003
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Grzegorz Szamel;Elijah Flenner and Hisao Hayakawa
  • 通讯作者:
    Elijah Flenner and Hisao Hayakawa
黒潮続流周辺海域における分野横断的船舶観測
黑潮延伸线周边海域的跨学科船舶观测
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Grzegorz Szamel;Elijah Flenner and Hisao Hayakawa;岡英太郎・根田昌典・植原量行・川合義美・轡田邦夫
  • 通讯作者:
    岡英太郎・根田昌典・植原量行・川合義美・轡田邦夫

Grzegorz Szamel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Grzegorz Szamel', 18)}}的其他基金

Statistical Mechanics of Active Matter
活性物质的统计力学
  • 批准号:
    2154241
  • 财政年份:
    2022
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Standard Grant
Statistical Mechanics of Soft Matter
软物质的统计力学
  • 批准号:
    1800282
  • 财政年份:
    2018
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Continuing Grant
Statistical Mechanics of the Dynamics in Quiescent and Driven Glassy Fluids
静态和驱动玻璃态流体动力学的统计力学
  • 批准号:
    1213401
  • 财政年份:
    2012
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Standard Grant
Structure, dynamics and solvation in heterogeneous environments
异质环境中的结构、动力学和溶剂化
  • 批准号:
    1213682
  • 财政年份:
    2012
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Continuing Grant
Statistical Mechanics of the Dynamics in Quiescent and Driven Glassy Fluids
静态和驱动玻璃态流体动力学的统计力学
  • 批准号:
    0909676
  • 财政年份:
    2009
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Standard Grant
Statistical Mechanics of Glassy Dynamics
玻璃动力学统计力学
  • 批准号:
    0517709
  • 财政年份:
    2005
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Continuing Grant
Statistical Mechanics of Supercooled Liquids and the Glass Transition
过冷液体和玻璃化转变的统计力学
  • 批准号:
    0111152
  • 财政年份:
    2001
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Standard Grant

相似国自然基金

Science China-Physics, Mechanics & Astronomy
  • 批准号:
    11224804
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
  • 批准号:
    2323415
  • 财政年份:
    2024
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
  • 批准号:
    2331294
  • 财政年份:
    2024
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Standard Grant
CAREER: The Contagion Science: Integration of inhaled transport mechanics principles inside the human upper respiratory tract at multi scales
职业:传染病科学:在多尺度上整合人类上呼吸道内的吸入运输力学原理
  • 批准号:
    2339001
  • 财政年份:
    2024
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Continuing Grant
Exploration of the Nonequilibrium Statistical Mechanics of Turbulent Collisionless Plasmas
湍流无碰撞等离子体的非平衡统计力学探索
  • 批准号:
    2409316
  • 财政年份:
    2024
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Continuing Grant
Unravelling coupling between multiscale tissue mechanics and heart valve calcification
揭示多尺度组织力学与心脏瓣膜钙化之间的耦合
  • 批准号:
    EP/X027163/2
  • 财政年份:
    2024
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Fellowship
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Standard Grant
CLIMA: Nimble, Adaptive, and Reusable Structures (NARS): Systems, Mechanics, and Financing
CLIMA:灵活、自适应和可重复使用的结构 (NARS):系统、力学和融资
  • 批准号:
    2331994
  • 财政年份:
    2024
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Standard Grant
The mechanics of pollinator attraction: development and function of floral diffraction gratings
传粉媒介吸引机制:花衍射光栅的发展和功能
  • 批准号:
    BB/Y003896/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Research Grant
Towards preservation of the natural knee: State-of-the-art approaches to understand the kinematics and tissue mechanics of human menisci in vivo.
保护自然膝盖:了解体内人体半月板运动学和组织力学的最先进方法。
  • 批准号:
    EP/Y002415/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Research Grant
4D Printed Origami Structures: Deformation Mechanisms and Mechanics
4D 打印折纸结构:变形机制和力学
  • 批准号:
    DP240103328
  • 财政年份:
    2024
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了