Towards Efficient Search-Based Algorithms for Belief Updating, Decision Making, and Explanation in Bayesian Belief Networks

贝叶斯信念网络中基于搜索的高效信念更新、决策和解释算法

基本信息

  • 批准号:
    9624629
  • 负责人:
  • 金额:
    $ 22.73万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1996
  • 资助国家:
    美国
  • 起止时间:
    1996-06-01 至 2001-06-30
  • 项目状态:
    已结题

项目摘要

Graphical probabilistic models, such as Bayesian belief networks and influence diagrams, offer an attractive knowledge representation tool for reasoning in knowledge-based systems. As many practical systems tend to be large, the main problem faced by this approach is the complexity of probabilistic reasoning, shown to be worst-case NP-hard both for exact and approximate inference. Since the complexity proofs are for the worst case, it is important to study the properties of real models and subsequently to develop algorithms that will explore these properties. The purpose of this research is to develop efficient algorithms for approximate belief updating and decision making in very large probabilistic models. These algorithms explore asymmetries in joint probability distributions over model variables and search for the most likely states of the model. Very often a small set of states covers the bulk of the probability space. The project includes theoretical studies of methods for prediction of convergence speed and error bounds in search-based algorithms and empirical verification of the theoretical predictions on practical models. The algorithms developed in the course of the project are implemented and empirically evaluated in very large knowledge-based systems. As the complexity of probabilistic inference in belief networks is one of the main obstacles to wide application of probabilistic methods in knowledge-based systems, the theoretical results and the algorithms developed in this project can be expected to have a major impact on the field.
图概率模型,如贝叶斯信念网络和影响图,提供了一个有吸引力的知识表示工具,推理知识为基础的系统。由于许多实际系统往往很大,这种方法面临的主要问题是概率推理的复杂性,无论是精确推理还是近似推理,都是最坏情况下的NP难问题。由于复杂性证明是针对最坏的情况,因此研究真实的模型的属性并随后开发将探索这些属性的算法是很重要的。本研究的目的是在非常大的概率模型中开发有效的近似信念更新和决策算法。这些算法探索模型变量的联合概率分布中的不对称性,并搜索模型的最可能状态。通常,一小组状态覆盖了概率空间的大部分。该项目包括对基于搜索的算法的收敛速度和误差范围的预测方法进行理论研究,并对实际模型的理论预测进行实证验证。在项目过程中开发的算法在非常大的知识为基础的系统中实施和经验评估。由于置信网络中概率推理的复杂性是概率方法在基于知识的系统中广泛应用的主要障碍之一,因此本项目中开发的理论结果和算法有望对该领域产生重大影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marek Druzdzel其他文献

Marek Druzdzel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CIF: Small: Theory and Algorithms for Efficient and Large-Scale Monte Carlo Tree Search
CIF:小型:高效大规模蒙特卡罗树搜索的理论和算法
  • 批准号:
    2327013
  • 财政年份:
    2023
  • 资助金额:
    $ 22.73万
  • 项目类别:
    Standard Grant
Development of deep learning for efficient search of continuous gravitational waves toward exploring new physics and new particles
发展深度学习以有效搜索连续引力波以探索新物理和新粒子
  • 批准号:
    23K13099
  • 财政年份:
    2023
  • 资助金额:
    $ 22.73万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Privacy-Preserving and Action-Event Sequence Data Mining and Advanced Data Structures for Efficient Heuristic Search
隐私保护和动作事件序列数据挖掘以及用于高效启发式搜索的高级数据结构
  • 批准号:
    RGPIN-2019-07301
  • 财政年份:
    2022
  • 资助金额:
    $ 22.73万
  • 项目类别:
    Discovery Grants Program - Individual
ESPRESSO: Efficient Search over Personal Repositories - Secure and Sovereign
ESPRESSO:对个人存储库进行高效搜索 - 安全且主权
  • 批准号:
    EP/W025868/1
  • 财政年份:
    2022
  • 资助金额:
    $ 22.73万
  • 项目类别:
    Research Grant
Efficient and Effective Search over Graph-like Databases
对类图数据库进行高效且有效的搜索
  • 批准号:
    RGPIN-2017-04993
  • 财政年份:
    2022
  • 资助金额:
    $ 22.73万
  • 项目类别:
    Discovery Grants Program - Individual
Development of a rational screening method for highly efficient search for neurotrophic compounds
开发合理的筛选方法以高效搜索神经营养化合物
  • 批准号:
    22K06689
  • 财政年份:
    2022
  • 资助金额:
    $ 22.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Efficient Nearest Neighbour Search for Wasserstein Distances
Wasserstein 距离的高效最近邻搜索
  • 批准号:
    557558-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 22.73万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
ESPRESSO: Efficient Search over Personal Repositories - Secure and Sovereign
ESPRESSO:对个人存储库进行高效搜索 - 安全且主权
  • 批准号:
    EP/W024659/1
  • 财政年份:
    2022
  • 资助金额:
    $ 22.73万
  • 项目类别:
    Research Grant
Efficient Search for Bioactive Substances from Difficult-to-Cultivate Microorganisms
从难以培养的微生物中高效寻找生物活性物质
  • 批准号:
    22K06662
  • 财政年份:
    2022
  • 资助金额:
    $ 22.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CPS: Medium: Collaborative Research: Srch3D: Efficient 3D Model Search via Online Manufacturing-specific Object Recognition and Automated Deep Learning-Based Design Classification
CPS:中:协作研究:Srch3D:通过在线制造特定对象识别和基于自动化深度学习的设计分类进行高效 3D 模型搜索
  • 批准号:
    2240733
  • 财政年份:
    2022
  • 资助金额:
    $ 22.73万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了