Statistical Inferences and Markov Chains, Admissibility, and Strong Inconsistency
统计推断和马尔可夫链、可接受性和强不一致
基本信息
- 批准号:9626601
- 负责人:
- 金额:$ 8.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1996
- 资助国家:美国
- 起止时间:1996-07-15 至 2000-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMS 96-26601 Eaton This research involves the evaluation of statistical inferences which are expressed as data dependent probability distributions. Inferences of particular interest include both posterior distributions and predictive distributions which are derived from improper prior distributions coupled with the formal application of Bayes Theorem. Questions concerning the admissibility of inferences have lead to the development of new and powerful techniques based on a fundamental connection between issues in statistical decision theory and recurrence/transcience issues involving symmetric Markov Chains. This fundamental connection is further developed in this research along with the somewhat allied noton of strong inconsistency for inferences. Applications of this research include the evaluation and improvement of inferential techniques in high dimensional models such as those which arise in large scale environmental models and those attempting to describe global change. %%% Many problems of statistics, such as those which arise in environmental studies, involve the simultaneous description and/or simultaneous prediction of many variables. In such cases, one often speaks of "high dimensional problems". This research involves the construction, evaluation and comparison of statistical methods which are relevant in these high dimensional problems. Recent developments have shown that the problems which arise in this research are, rather surprisingly, closely connected with certain problems which arise in a seemingly unrelated area of probability. This connection promises to yield exciting new insights regarding both practical and theoretical issues involving high dimensional problems. ***
DMS 96-26601伊顿 这项研究涉及统计推断的评价 其被表示为数据相关的概率分布。 特别感兴趣的推论包括后验和后验 分布和预测分布, 不适当的先验分布加上正式的应用程序 贝叶斯定理关于可否受理的问题 推理导致了新的和强大的发展 技术基于问题之间的基本联系, 统计决策理论与递归/瞬时问题 涉及对称马尔可夫链。这种基本的联系是 在这项研究中进一步发展沿着与有点结盟 推论的不一致性。应用这种 研究包括评估和改进推理 技术在高维模型,如那些出现 在大规模的环境模型和那些试图描述 全球变化 %%% 许多统计问题,如环境统计中出现的问题, 研究,涉及同时描述和/或同时 许多变量的预测。在这种情况下,人们常常会说, “高维问题”。这项研究涉及的建设, 相关统计方法的评价和比较 在这些高维问题中。最近的事态发展表明 在这项研究中出现的问题,令人惊讶的是, 与某些问题密切相关,这些问题出现在一个看似 不相关的概率。这种联系保证会产生 在实践和理论问题上都有令人振奋的新见解 涉及高维问题。 ***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Morris Eaton其他文献
Morris Eaton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Morris Eaton', 18)}}的其他基金
Mathematical Sciences: Statistical Inferences, Decision Theory, and Asymptotics of Eigenvalues and Eigenprojections
数学科学:统计推论、决策论以及特征值和特征投影的渐近
- 批准号:
9300973 - 财政年份:1993
- 资助金额:
$ 8.1万 - 项目类别:
Standard Grant
Mathematical Sciences: Topics in Decision Theory and Multivariate Analysis
数学科学:决策理论和多元分析主题
- 批准号:
8922607 - 财政年份:1990
- 资助金额:
$ 8.1万 - 项目类别:
Continuing Grant
Mathematical Sciences: Prediction Theory, Asymptotic Distributions of Eigenvalues, Confidence Set Validity
数学科学:预测理论、特征值渐近分布、置信集有效性
- 批准号:
8800284 - 财政年份:1988
- 资助金额:
$ 8.1万 - 项目类别:
Continuing Grant
Mathematical Sciences: Topics in Multivariate Statistical Analysis, Statistical Decision Theory and Multivariate Probability Inequalities
数学科学:多元统计分析、统计决策理论和多元概率不等式主题
- 批准号:
8319924 - 财政年份:1984
- 资助金额:
$ 8.1万 - 项目类别:
Continuing Grant
Topics in Multivariate Statistical Analysis, Statistical Decision Theory and Multivariate Probability Inequalities
多元统计分析、统计决策理论和多元概率不等式专题
- 批准号:
8100762 - 财政年份:1981
- 资助金额:
$ 8.1万 - 项目类别:
Continuing Grant
相似海外基金
Statistical Inferences under Monotonic Hazard Trend in Survival Analysis
生存分析中单调危险趋势下的统计推断
- 批准号:
2311292 - 财政年份:2023
- 资助金额:
$ 8.1万 - 项目类别:
Continuing Grant
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
- 批准号:
10590913 - 财政年份:2023
- 资助金额:
$ 8.1万 - 项目类别:
Population genomic inferences of history and selection across populations and time
跨群体和时间的历史和选择的群体基因组推断
- 批准号:
10623079 - 财政年份:2023
- 资助金额:
$ 8.1万 - 项目类别:
"She must not know much about that": Children's inferences based on others' listener design
“她一定对此了解不多”:孩子们根据别人的听众设计做出的推断
- 批准号:
2317559 - 财政年份:2023
- 资助金额:
$ 8.1万 - 项目类别:
Standard Grant
Improving inferences on health effects of chemical exposures
改进对化学品暴露对健康影响的推断
- 批准号:
10753010 - 财政年份:2023
- 资助金额:
$ 8.1万 - 项目类别:
Generative adversarial networks for demographic inferences of nonmodel species from genomic data
根据基因组数据对非模型物种进行人口统计推断的生成对抗网络
- 批准号:
NE/X009637/1 - 财政年份:2023
- 资助金额:
$ 8.1万 - 项目类别:
Research Grant
Beyond 1D Structure of Earth's Core - Reconciling Inferences from Seismic and Geomagnetic Observations
超越地核的一维结构 - 协调地震和地磁观测的推论
- 批准号:
NE/W005247/1 - 财政年份:2023
- 资助金额:
$ 8.1万 - 项目类别:
Research Grant
Interactions between ES-miRNAs and environmental risk factors are responsible for TNBC progression and associated racial health disparities: a novel analysis with multilevel moderation inferences
ES-miRNA 和环境风险因素之间的相互作用导致 TNBC 进展和相关种族健康差异:一项采用多级调节推论的新颖分析
- 批准号:
10594746 - 财政年份:2023
- 资助金额:
$ 8.1万 - 项目类别:
Models and Inferences for Heterogeneous Interaction Patterns in Social Networks
社交网络中异构交互模式的模型和推论
- 批准号:
2210735 - 财政年份:2022
- 资助金额:
$ 8.1万 - 项目类别:
Standard Grant
Distance-based robust inferences and model selection for semiparametric models
半参数模型的基于距离的鲁棒推理和模型选择
- 批准号:
RGPIN-2018-04328 - 财政年份:2022
- 资助金额:
$ 8.1万 - 项目类别:
Discovery Grants Program - Individual