Models and Inferences for Heterogeneous Interaction Patterns in Social Networks
社交网络中异构交互模式的模型和推论
基本信息
- 批准号:2210735
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The rapid growth of social network platforms brings opportunities as well as challenges to identify, extract, and investigate the users’ sentiment on subjects of scientific and public interest. This research project aims to identify the sources of social network heterogeneity. The project will study the likelihood of replies to a posting as well as the propagation of sentiments through a social network. Results of the study are expected to help identify sentiment exchange patterns through interactions between users; detect sub-networks of posts with emotional clusters or exhibiting sentiment polarization; and understand how contagious sentiments propagate through the network of Twitter posts. The project will be integrated into multilevel education through graduate student advising, modernized graduate course components, undergraduate research on carefully devised small problems, and outreach to high school students. Broad participation will be encouraged through partnerships with organizations promoting STEM among under-represented groups. Results from the project will be shared via public repositories for data/codes, software packages, online tutorials, and social media. Dynamic networks are formed among Twitter users by evolving tweets on a certain theme (e.g., depression) through retweets, replies, and mentions, which are critical in sentiment analysis. Existing dynamic network models not accounting for heterogeneous behavioral patterns cannot provide adequate fits for large, real networks. This project aims to tackle two sources of heterogeneity in dynamic network modeling: reciprocity in emotion sharing and similarity clustering in terms of behavioral features. The investigators plan to develop two novel models that modify the preferential attachment (PA) model. The first one retains the scale-free property and allows personalized heterogeneous tendencies to generate reciprocal edges. The second model is a practical spatial superstar PA model that allows a higher level of interaction among nodes of closer social ties measured in a feature space. Their theoretical properties will be studied via rigorous asymptotic analyses. Inferences about the model parameters when fitting observed networks will be developed through likelihood-based, Bayesian, moment-based, and extreme value approaches. Implementations of the models and inferences will be made publicly available via user-friendly, open-source software packages. All the methods under development will be validated through simulation studies, and the validated methods will then be applied to dynamic networks from Tweets on mental-health-related tags.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
社交网络平台的快速发展为识别、提取和调查用户对科学和公共利益主题的情绪带来了机遇和挑战。本研究项目旨在找出社会网络异质性的来源。该项目将研究帖子回复的可能性,以及社交网络上情绪的传播。研究结果有望通过用户之间的互动来帮助识别情感交换模式;检测具有情感集群或表现出情感极化的帖子子网络;并了解情绪是如何通过推特帖子网络传播的。该项目将通过研究生指导、现代化研究生课程组成、精心设计的小问题的本科生研究以及向高中学生的推广,融入多层次教育。通过与在代表性不足的群体中推广STEM的组织建立伙伴关系,鼓励广泛参与。该项目的结果将通过数据/代码、软件包、在线教程和社交媒体的公共存储库共享。动态网络是在Twitter用户之间形成的,通过转发、回复和提及,围绕某个主题(例如抑郁症)不断演变的推文,这在情绪分析中至关重要。没有考虑异构行为模式的现有动态网络模型不能为大型真实网络提供充分的拟合。本项目旨在解决动态网络建模中的两个异质性来源:情感共享中的互惠性和行为特征方面的相似性聚类。研究人员计划开发两个新的模型来修改优先依恋(PA)模型。第一种方法保留了无标度特性,并允许个性化的异构趋势产生互反边。第二个模型是一个实用的空间超级明星PA模型,它允许在特征空间中测量的具有更紧密社会关系的节点之间进行更高水平的交互。它们的理论性质将通过严格的渐近分析来研究。当拟合观察到的网络时,关于模型参数的推断将通过基于似然、贝叶斯、基于矩和极值方法来发展。模型和推理的实现将通过用户友好的开源软件包公开提供。所有正在开发的方法都将通过模拟研究进行验证,然后将验证的方法应用于与心理健康相关标签的推文动态网络。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Generating General Preferential Attachment Networks with R Package wdnet
- DOI:10.6339/23-jds1110
- 发表时间:2023-01
- 期刊:
- 影响因子:0
- 作者:Yelie Yuan;Tiandong Wang;Jun Yan;Panpan Zhang
- 通讯作者:Yelie Yuan;Tiandong Wang;Jun Yan;Panpan Zhang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jun Yan其他文献
Calculation of the Physical Optics Scattering by Trimmed NURBS Surfaces
修剪 NURBS 曲面的物理光学散射计算
- DOI:
10.1109/lawp.2014.2348564 - 发表时间:
2014-08 - 期刊:
- 影响因子:4.2
- 作者:
Jun Yan;Jun Hu;ZaipingNie - 通讯作者:
ZaipingNie
Magmatic Origin for Sediment-hosted Au Deposits, Guizhou Province, China: In-situ Chemistry and Sulfur Isotopic Composition of Pyrites, Shuiyindong and Jinfeng Deposits
中国贵州省沉积物金矿床的岩浆成因:黄铁矿、水银洞和金峰矿床的原位化学和硫同位素组成
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:5.8
- 作者:
Zhuojun Xie;Yong Xia;Jean S. Cline;Michael J. Pribil;Alan Koenig;Qinping Tan;Dongtian Wei;Zepeng Wang;Jun Yan - 通讯作者:
Jun Yan
長距離ランニング中の疾走動作の変容は「適応制御」なのか
长跑时冲刺动作的变化是“自适应控制”造成的吗?
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Ryunosuke Oikawa;Goro Tajima;Jun Yan;Moritaka Maruyama;Atsushi Sugawara;Shinya Oikawa;Takaaki Saigo;Hirotaka Takahashi;Sho Kikuchi;Doita Minoru;関根正敏;山崎 健 - 通讯作者:
山崎 健
Depth Image Based Object Localization Using Binocular Camera and Dual-stream Convolutional Neural Network
使用双目相机和双流卷积神经网络进行基于深度图像的目标定位
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Yimei Zhang;Chao Wu;Mengwei Yang;B. Kang;Jun Yan - 通讯作者:
Jun Yan
Nanoelectrodes to differentiate adipose derived stem cells into neural lineage
纳米电极将脂肪干细胞分化为神经谱系
- DOI:
10.1109/nano.2017.8117454 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
K. Garde;Jun Yan;S. Aravamudhan - 通讯作者:
S. Aravamudhan
Jun Yan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jun Yan', 18)}}的其他基金
Conference: UConn Sports Analytics Symposium: Engaging Students into Data Science
会议:康涅狄格大学体育分析研讨会:让学生参与数据科学
- 批准号:
2219336 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Probing moire flat bands with optical spectroscopy
用光谱法探测莫尔平坦带
- 批准号:
2004474 - 财政年份:2020
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Fingerprinting Methods for Detection and Attribution of Changes in Climate Extremes with Spatial Estimating Equations
利用空间估计方程检测和归因极端气候变化的指纹方法
- 批准号:
1521730 - 财政年份:2015
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Graphene Thermoelectric THz Direct and Heterodyne Detectors
石墨烯热电太赫兹直接和外差探测器
- 批准号:
1509599 - 财政年份:2015
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Statistical Inferences, Computing, and Applications of Semiparametric Accelerated Failure Time Models
半参数加速失效时间模型的统计推断、计算和应用
- 批准号:
1209022 - 财政年份:2012
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Unified Dynamic Modeling of Event Time Data with Semiparametric Profile Estimating Functions: Theory, Computing, and Applications
使用半参数轮廓估计函数对事件时间数据进行统一动态建模:理论、计算和应用
- 批准号:
0805965 - 财政年份:2008
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
相似海外基金
Statistical Inferences under Monotonic Hazard Trend in Survival Analysis
生存分析中单调危险趋势下的统计推断
- 批准号:
2311292 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
- 批准号:
10590913 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Population genomic inferences of history and selection across populations and time
跨群体和时间的历史和选择的群体基因组推断
- 批准号:
10623079 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
"She must not know much about that": Children's inferences based on others' listener design
“她一定对此了解不多”:孩子们根据别人的听众设计做出的推断
- 批准号:
2317559 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Improving inferences on health effects of chemical exposures
改进对化学品暴露对健康影响的推断
- 批准号:
10753010 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Generative adversarial networks for demographic inferences of nonmodel species from genomic data
根据基因组数据对非模型物种进行人口统计推断的生成对抗网络
- 批准号:
NE/X009637/1 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Research Grant
Beyond 1D Structure of Earth's Core - Reconciling Inferences from Seismic and Geomagnetic Observations
超越地核的一维结构 - 协调地震和地磁观测的推论
- 批准号:
NE/W005247/1 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Research Grant
Interactions between ES-miRNAs and environmental risk factors are responsible for TNBC progression and associated racial health disparities: a novel analysis with multilevel moderation inferences
ES-miRNA 和环境风险因素之间的相互作用导致 TNBC 进展和相关种族健康差异:一项采用多级调节推论的新颖分析
- 批准号:
10594746 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Distance-based robust inferences and model selection for semiparametric models
半参数模型的基于距离的鲁棒推理和模型选择
- 批准号:
RGPIN-2018-04328 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Discovery Grants Program - Individual
Methods for generalizing inferences from cluster randomized controlled trials to target populations
将整群随机对照试验的推论推广到目标人群的方法
- 批准号:
10362886 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别: