Development of a Stereolithography Laboratory for Undergraduate Instruction

本科教学立体光刻实验室的开发

基本信息

项目摘要

No matter how experienced one may be at reading blueprints and computer-aided-design CAD) images of a complex object, it is still very difficult to visualize exactly what the actual part will look like. Conventional model-making methods can require weeks to months. With Rapid Prototyping (RP) or Stereolithography technology, however, turnaround for the model-making step can be cut to days, and the model itself can often made within several hours, a compelling advantages at a time when the global nature of the industrial marketplace makes minimizing time to-market cycle times and maximizing productivity a matter of corporate life and death. The demand for trained engineers and technologists to apply Rapid Prototyping technology to manufacturing has exploded in recent years. Some of the practical applications of RP technology are visualization, verification, iteration, optimization, and even "real parts" fabrication. RP effects almost every manufacturing-related enterprise and an endless list of products from automotive, aircraft electronics parts to toys, jewelry, medical implants, to architectural and scientific models, and etc. As an indication of the size of the prototype market alone, $40 billion is spent in U.S. annually on R&D by large companies in prototype-intensive industries, and Fisher Guide Division of General Motors alone makes over 250,000 prototypes/models a year. Just as a CAD system peripheral for building three-dimensional (3D) prototypes, the need for RP systems in U.S. is in the range of 200,000 what at current RP prices of $120,000 to $500,000 translates into $20 to $100 billion. Only 1000 RP systems are installed now worldwide. The market for production is many times larger. American businesses have found that this technology is critical to competitiveness in manufacturing in the global marketplace. Although American companies currently lead in development of the Rapid Prototyping technology, Japanese and European companies are catching up quickly, therefore, skilled engineers and technologists are critical to maintain this lead. Due to the lack of a fully developed laboratory, undergraduate courses currently do not provide training on RP technology. Students are not familiar with Rapid Prototyping processes, photopolymer fabrication, software architecture, CAD Modeling, part building, and testing. These skills will be essential to the graduating students at the baccalaureate level within the next ten years since the usage of this technology is getting very popular in industry today. This proposal is to develop a state-of-the art Stereolithography Laboratory. The reason we are requesting funds for this laboratory is to provide training in capabilities, function and integration of RP technologies into manufacturing systems. It is believed that this laboratory can be used to create a better balance for an improved undergraduate education in manufacturing systems.
无论一个人在阅读复杂物体的阅读蓝图和计算机辅助设计(CAD)图像方面多么有经验,仍然很难准确地想象实际部分的样子。传统的模型制作方法可能需要数周至数月的时间。然而,使用快速成型(RP)或立体光刻技术,模型制作步骤的周转时间可以缩短到几天,模型本身通常可以在几个小时内制作出来,这在工业市场的全球性使得最小化上市周期时间和最大化生产力成为企业生死存亡的问题时是一个引人注目的优势。近年来,对训练有素的工程师和技术人员将快速成型技术应用于制造业的需求呈爆炸式增长。RP技术的一些实际应用是可视化、验证、迭代、优化,甚至是“真实的零件”制造。 RP几乎影响到每一个制造相关的企业和无数的产品,从汽车,飞机电子零件到玩具,珠宝,医疗植入物,建筑和科学模型,等等。仅作为原型市场规模的一个指标,在美国,原型密集型行业的大公司每年花费400亿美元用于研发,仅通用汽车公司的Fisher Guide部门每年就生产超过25万个原型/模型。就像用于构建三维(3D)原型的CAD系统外围设备一样,美国对RP系统的需求在20万美元的范围内,按照目前RP价格12万至50万美元的价格,转化为200亿至1000亿美元。目前全球仅安装了1000套RP系统。生产的市场要大很多倍。美国企业已经发现,这项技术对制造业在全球市场上的竞争力至关重要。虽然美国公司目前在快速成型技术的发展方面处于领先地位,但日本和欧洲公司正在迅速赶上,因此,熟练的工程师和技术人员对于保持这一领先地位至关重要。 由于缺乏成熟的实验室,本科课程目前不提供RP技术培训。学生不熟悉快速成型工艺,光聚合物制造,软件架构,CAD建模,零件制造和测试。这些技能将是必不可少的毕业生在学士学位水平在未来十年内,因为这种技术的使用在今天的行业变得非常流行。 该提案旨在建立一个最先进的立体光刻实验室。我们要求为这个实验室提供资金的原因是提供能力,功能和RP技术集成到制造系统中的培训。据信,这个实验室可以用来创造一个更好的平衡,提高本科教育在制造系统。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Cheng-Hsin Liu其他文献

Paul Cheng-Hsin Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Cheng-Hsin Liu', 18)}}的其他基金

Development of an Automatic Data Collection and Identification Laboratory for Undergraduate Instruction
本科教学自动数据采集与识别实验室的开发
  • 批准号:
    9550859
  • 财政年份:
    1995
  • 资助金额:
    $ 8.5万
  • 项目类别:
    Standard Grant

相似海外基金

I-Corps: Translation potential of stereolithography 3D printing to create soft elastomers
I-Corps:立体光刻 3D 打印制造软弹性体的转化潜力
  • 批准号:
    2414710
  • 财政年份:
    2024
  • 资助金额:
    $ 8.5万
  • 项目类别:
    Standard Grant
CAREER: Illuminating molecular-level effects in new plant-based nanocomposites for additive manufacturing by stereolithography
职业:通过立体光刻阐明用于增材制造的新型植物基纳米复合材料的分子水平效应
  • 批准号:
    2337946
  • 财政年份:
    2024
  • 资助金额:
    $ 8.5万
  • 项目类别:
    Continuing Grant
Fabrication and Structural Optimization of Hierarchically Porous Carbon Materials by Using Stereolithography 3D Printing
利用立体光刻3D打印制备多级孔碳材料并优化其结构
  • 批准号:
    21K14709
  • 财政年份:
    2021
  • 资助金额:
    $ 8.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Stereolithography: Enabling Polymer Network and Multi-Scale Structure Control
立体光刻:实现聚合物网络和多尺度结构控制
  • 批准号:
    2007909
  • 财政年份:
    2021
  • 资助金额:
    $ 8.5万
  • 项目类别:
    Standard Grant
Creation of 3D stereolithography technology by non-contact magnetic support operation
通过非接触式磁支撑操作创建 3D 立体光刻技术
  • 批准号:
    21H01308
  • 财政年份:
    2021
  • 资助金额:
    $ 8.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
3D printed tissues using stereolithography bioprinting
使用立体光刻生物打印 3D 打印组织
  • 批准号:
    556514-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 8.5万
  • 项目类别:
    University Undergraduate Student Research Awards
Multimaterial Stereolithography by Crosslinking through Luminescence Excitation
通过发光激发交联的多材料立体光刻
  • 批准号:
    EP/T013680/1
  • 财政年份:
    2020
  • 资助金额:
    $ 8.5万
  • 项目类别:
    Research Grant
Development of Laser Stereolithography with Carbon Fiber Oriented along Shape and Direction of Layer of Part
沿零件层形状和方向定向碳纤维激光立体光刻技术的发展
  • 批准号:
    19K04121
  • 财政年份:
    2019
  • 资助金额:
    $ 8.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of self-growth biotube for large blood vessel reconstruction by stereolithography and in-body tissue architecture
通过立体光刻和体内组织结构开发用于大血管重建的自生长生物管
  • 批准号:
    19H03741
  • 财政年份:
    2019
  • 资助金额:
    $ 8.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of scalable micro-stereolithography using spatial light moduration
使用空间光调制开发可扩展的微立体光刻技术
  • 批准号:
    18K13667
  • 财政年份:
    2018
  • 资助金额:
    $ 8.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了