CAREER: Illuminating molecular-level effects in new plant-based nanocomposites for additive manufacturing by stereolithography
职业:通过立体光刻阐明用于增材制造的新型植物基纳米复合材料的分子水平效应
基本信息
- 批准号:2337946
- 负责人:
- 金额:$ 62.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-08-01 至 2029-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL SUMMARYPlants are remarkable organisms. They are towering, sunlight-driven factories that use carbon dioxide, water, and soil nutrients to create all the materials they need to survive, including the factory itself! While many human-made factories are constructed using concrete, plants use long molecules called polymers to create supporting structures. These structures allow a plant to stand up and reach out for sunlight, move water and nutrients between its organs, and protect itself and its offspring. One of these polymers is called lignin, and it functions like the cement in concrete; it is a sort of glue that holds everything together. It also has a chemical structure that is very similar to many of the plastics that people use in everyday life. Therefore, lignin could be used to make new plastics, including those used for 3D printing. Using lignin to 3D print objects would be like how plants use lignin to manufacture their leaves, stems, roots, and seeds. Also, since plants are a renewable resource, plastics made from them would also be renewable, which is the opposite of current non-renewable plastics that are made from crude oil. Finally, since plants use carbon dioxide to make lignin, growing new plants to make new plastics would reduce the amount of carbon dioxide in the atmosphere, which could lessen its effect on climate change. The goal of this project is to learn how to control the structure of lignin taken from plants and use it to create new materials for 3D printing. New chemistry methods to extract, modify, and use lignin will be explored. The principal investigator will also study how using lignin and other plant polymers could lessen the effects of climate change and how using them could help people in rural communities get good jobs related to these new renewable materials. In addition, the research plan will be augmented by enriching undergraduate education at the intersection of polymer science and sustainability, supporting undergraduate research opportunities related to sustainability, and disseminating cutting edge research principles to K12 students through Research Experiences for Teachers program.TECHNICAL SUMMARYThe overarching goals of this CAREER plan are to (1) develop 3D printable composite resins consisting of suitably modified nanocellulose and lignin, (2) use this research as a platform to introduce students to both fundamental principles of polymer science and issues of social justice and sustainability that underpin renewable bioproducts, and (3) contribute to global efforts to diminish the effects of anthropogenic climate change by reducing the concentration of atmospheric carbon. The proposed CAREER plan will advance knowledge and understanding in several fields, including green engineering, synthetic chemistry, and polymer science and engineering. The aims include (1) establishing approaches to control the oxidation state of aliphatic carbons in lignin during fractionation and upgrading, (2) developing techniques to control lignin structure and function as a photopolymerizable polymer matrix, and (3) identifying methods to blend modified lignin feedstocks to create new stereolithography resins. These activities explore transformative concepts, including producing entirely renewable biocomposite resins for 3D printing. In addition, the research plan will be augmented by (1) enriching undergraduate education at the intersection of polymer science and sustainability, (2) supporting undergraduate research opportunities related to sustainability and “Drawdown,” and (3) disseminating cutting edge research principles to K12 students through Research Experiences for Teachers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要是杰出的生物。它们是高耸的,由阳光驱动的工厂,使用二氧化碳,水和土壤养分来创造其生存所需的所有材料,包括工厂本身!尽管许多人造工厂是使用混凝土构建的,但植物使用称为聚合物的长分子来创建辅助结构。这些结构使植物可以站起来伸出阳光,在其器官之间移动水和养分,并保护自身及其后代。这些聚合物之一称为木质素,它的作用像混凝土中的水泥。这是一种将所有东西融合在一起的胶水。它还具有与人们在日常生活中使用的许多塑料非常相似的化学结构。因此,木质素可用于制造新的塑料,包括用于3D打印的塑料。使用木质素到3D打印物体就像植物如何使用木质素制造其叶子,茎,根和种子一样。同样,由于植物是一种可再生资源,因此由它们制成的塑料也将是可再生的,这与当前由原油制成的当前不可再生塑料相反。最后,由于植物使用二氧化碳制造木质素,因此种植新植物以制造新塑料会减少大气中二氧化碳的量,从而减少其对气候变化的影响。该项目的目的是学习如何控制从植物中获取的木质素结构,并使用它为3D打印创建新材料。将探索提取,修饰和使用木质素的新化学方法。首席研究人员还将研究使用木质素和其他植物聚合物如何减少气候变化的影响,以及如何使用它们来帮助农村社区的人们获得与这些新的可再生材料有关的好工作。此外,将通过在聚合物科学与可持续性的交集中丰富本科教育来增强研究计划,支持与可持续性有关的本科研究机会,并通过对教师计划的研究经验向K12学生传播尖端的研究原则。 (2)将这项研究作为一个平台,向学生介绍聚合物科学的基本原理,以及基于可再生生物生物生物生物生物生物生物生物生物生物生物生物生物生物生物生物生物生物生物生物生物的社会正义和可持续性问题,以及(3)通过降低大气碳的浓度来减少人为气候变化的影响的全球努力。拟议的职业计划将在包括绿色工程,合成化学以及聚合物科学与工程等多个领域的知识和理解中提高知识和理解。目的包括(1)建立方法来控制分馏和升级期间木质素碳酸盐碳的氧化状态,(2)开发技术来控制木质素结构并作为可光聚合物聚合物矩阵的功能,以及(3)识别改良的木质蛋白投影蛋白的定位素的方法。这些活动探索了变革性概念,包括生产,研究计划将通过(1)在聚合物科学与可持续性的交集中丰富本科教育,(2)支持与可持续性的研究机会,与可持续性和“提取”,以及(3)通过对K12的促进研究原理进行教师的促进研究原理的促进研究,并将其奖励的奖项纳入教师。通过使用基金会的智力优点和更广泛影响的评论标准进行评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen Chmely其他文献
Stephen Chmely的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen Chmely', 18)}}的其他基金
Frontiers in Biorefining IV: Chemicals and Products from Renewable Carbon
生物精炼前沿 IV:来自可再生碳的化学品和产品
- 批准号:
1604019 - 财政年份:2016
- 资助金额:
$ 62.53万 - 项目类别:
Standard Grant
相似国自然基金
基于优化结构光照明的跨尺度荧光分子成像系统
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于优化结构光照明的跨尺度荧光分子成像系统
- 批准号:62105205
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
基于数字扫描光片照明的活细胞三维单分子超分辨成像及示踪研究
- 批准号:
- 批准年份:2019
- 资助金额:59 万元
- 项目类别:面上项目
单颗粒追踪-结构光照明超分辨率荧光显微镜
- 批准号:31800717
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于多尺度分子影像的脑胶质瘤血管正常化时间窗检测关键技术研究
- 批准号:81671851
- 批准年份:2016
- 资助金额:56.0 万元
- 项目类别:面上项目
相似海外基金
植物感染糸状菌の病原から共生と対照的かつ連続的な感染戦略を支える分子機構の解明
阐明支持持续感染策略的分子机制,与植物感染丝状真菌的共生和发病机制相反
- 批准号:
23K26903 - 财政年份:2024
- 资助金额:
$ 62.53万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
超音速分子線照射による遷移金属材料に対する原子層エッチング表面反応機構の解明
超声分子束辐照阐明过渡金属材料原子层刻蚀表面反应机理
- 批准号:
24K08246 - 财政年份:2024
- 资助金额:
$ 62.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Illuminating the function regulome of cardiac L-type Ca2+ channels in health and disease
阐明心脏 L 型 Ca2 通道在健康和疾病中的功能调节组
- 批准号:
10628916 - 财政年份:2023
- 资助金额:
$ 62.53万 - 项目类别:
Illuminating the evolutionary history of colorectal cancer metastasis: basic principles and clinical applications
阐明结直肠癌转移的进化史:基本原理和临床应用
- 批准号:
10906574 - 财政年份:2023
- 资助金额:
$ 62.53万 - 项目类别:
ジケトン分子吸着過程およびガスクラスターイオンビーム照射による表面反応過程の解明
通过气体团簇离子束照射阐明二酮分子的吸附过程和表面反应过程
- 批准号:
23K13236 - 财政年份:2023
- 资助金额:
$ 62.53万 - 项目类别:
Grant-in-Aid for Early-Career Scientists