Lattice Curvature and Crystal Plasticity: Theory and Computation

晶格曲率和晶体可塑性:理论与计算

基本信息

  • 批准号:
    9700358
  • 负责人:
  • 金额:
    $ 23.39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing grant
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-06-01 至 2001-12-31
  • 项目状态:
    已结题

项目摘要

9700358 Parks A program of constitutive and computational research in crystal plasticity is proposed which is based on the concept of geometrically necessary dislocation density, proportional to certain spatial gradients of crystal shear strain, as providing a physical means to introduce size- dependent plastic response in crystals. The proposed formulation fits nicely with the underlying physical concepts, most clearly described by Ashby over 20 years ago. Among the host of applications where scale-dependent plasticity driven by this mechanism is encountered are the grain-size dependence of flow strength and work-hardening in polycrystals (Hall-Petch effect), size dependence of indentation microhardness, particle-size effects in the dispersion strengthening crystals. and others. In each case, the attainment of locally inhomogeneous shear strain,,over a characteristic geometric length scale,,results approximately in the storage of a geometrically necessary dislocations, where b is the crystal lattice constant. These "geometric" dislocations, which relieve the lattice incompatibility which would otherwise be introduced by conservative dislocation movement in producing the strain gradient, act as obstacles to other (glissile) dislocations, producing very enhanced local hardening. A review of the field shows that the computational methods proposed for dealing with this class of problems are both feasible to implement and are methodologically in good agreement with the materials science understanding. Preliminary computational results on a multi-crystalline aggregate have shown a clear Hall-Petch effect, based on "first principles." The effects of the extra dislocation density, which is concentrated near grain boundaries struggling to deform compatibly, also give rise to distinct patterning of strain within the grain. The proposed extensions of the work will address less idealized versions of the Hall-Petch phenomenon, the deformation of thin metallic layers constrained between ceramics, including thermally-induced misfit strain, and particle size effects in the dispersion strengthening of crystals. The results will be of fundamental scientific value, being a first computational thrust into quantifying scale effects in crystal plasticity and the interactions of statistically stored and geometrically necessary dislocations. Among the industrial applications which could benefit from a robust computational capability to account for scale-dependent plasticity are the mechanical behavior of multi-layer electronic devices and thin films.
本文提出了晶体塑性的本构和计算研究方案,该方案基于几何必要位错密度的概念,与晶体剪切应变的一定空间梯度成正比,为引入晶体中尺寸相关的塑性响应提供了一种物理手段。所提出的公式与Ashby在20多年前最清晰地描述的基本物理概念非常吻合。在由该机制驱动的尺度相关塑性的众多应用中,包括多晶体中流动强度和加工硬化的晶粒尺寸依赖性(霍尔-佩奇效应),压痕显微硬度的尺寸依赖性,分散强化晶体中的粒度效应。和其他人。在每一种情况下,局部不均匀剪切应变的实现,在一个特征几何长度尺度上,近似地导致了一个几何上必要的位错的存储,其中b是晶格常数。这些“几何”位错缓解了晶格不相容,否则,在产生应变梯度时,保守位错运动将引入晶格不相容,作为其他(滑块)位错的障碍,产生非常增强的局部硬化。对这一领域的回顾表明,所提出的处理这类问题的计算方法是可行的,而且在方法上与材料科学的理解是一致的。基于“第一性原理”的多晶聚集体的初步计算结果显示出清晰的霍尔-佩奇效应。额外的位错密度的影响,集中在晶界附近,难以协调变形,也会在晶粒内产生明显的应变模式。提出的工作扩展将解决不太理想的Hall-Petch现象,陶瓷之间约束的薄金属层的变形,包括热诱导的失配应变,以及晶体弥散强化中的粒度效应。这些结果将具有基本的科学价值,是对晶体塑性的尺度效应以及统计上存储的和几何上必要的位错的相互作用进行量化的第一次计算推进。在工业应用中,可以从强大的计算能力中受益,以解释尺度相关的塑性,包括多层电子器件和薄膜的机械行为。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Parks其他文献

Design and Modeling of a Wide Dynamic-Range Hardness Sensor for Biological Tissue Assessment
用于生物组织评估的宽动态范围硬度传感器的设计和建模
  • DOI:
    10.1109/jsen.2013.2271736
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    S. Zhao;David Parks;Chang Liu
  • 通讯作者:
    Chang Liu
Leading Computational Methods on Scalar and Vector HEC Platforms
标量和矢量 HEC 平台上的领先计算方法
  • DOI:
    10.1109/sc.2005.41
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Oliker;J. Carter;M. Wehner;A. Canning;S. Ethier;A. Mirin;David Parks;P. Worley;S. Kitawaki;Yoshinori Tsuda
  • 通讯作者:
    Yoshinori Tsuda
Lessons learned from community and citizen science monitoring on the Elwha River restoration project
从埃尔瓦河恢复项目的社区和公民科学监测中汲取的经验教训
  • DOI:
    10.3389/fevo.2023.1216080
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3
  • 作者:
    M. V. Eitzel;R. Meyer;Sarah Morley;Ian M. Miller;P. Shafroth;Chelsea Behymer;Christopher Jadallah;David Parks;Anna Kagley;Anne Shaffer;Heidi Ballard
  • 通讯作者:
    Heidi Ballard

David Parks的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Parks', 18)}}的其他基金

Experimental and Computational Study of Flow Localization and Ductile Fracture at High Temperatures, with Application to Hot Workability
高温下流动局部化和延性断裂的实验和计算研究及其在热加工性中的应用
  • 批准号:
    8808556
  • 财政年份:
    1988
  • 资助金额:
    $ 23.39万
  • 项目类别:
    Continuing grant
Large Inelastic Deformation of Glassy Polymers
玻璃态聚合物的大非弹性变形
  • 批准号:
    8405995
  • 财政年份:
    1984
  • 资助金额:
    $ 23.39万
  • 项目类别:
    Continuing Grant
Energy Perturbation Methods in Finite Element Notch and Crack Stress Analysis
有限元缺口和裂纹应力分析中的能量摄动方法
  • 批准号:
    7913221
  • 财政年份:
    1980
  • 资助金额:
    $ 23.39万
  • 项目类别:
    Standard Grant
Research Initiation - Eulerian Finite Element Analysis of Steady Flow of Deformable Solids
研究启动-可变形固体稳态流动的欧拉有限元分析
  • 批准号:
    7706475
  • 财政年份:
    1977
  • 资助金额:
    $ 23.39万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Large scale geometry and negative curvature
职业:大规模几何和负曲率
  • 批准号:
    2340341
  • 财政年份:
    2024
  • 资助金额:
    $ 23.39万
  • 项目类别:
    Continuing Grant
Weak notions of curvature-dimension conditions on step-two Carnot groups
二级卡诺群上曲率维数条件的弱概念
  • 批准号:
    24K16928
  • 财政年份:
    2024
  • 资助金额:
    $ 23.39万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Investigating the mechanosensitive interplays between genetic control and self-organisation during the emergence of cardiac tissue curvature
研究心脏组织曲率出现过程中遗传控制和自组织之间的机械敏感性相互作用
  • 批准号:
    BB/Y00566X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.39万
  • 项目类别:
    Research Grant
Canonical mean curvature flow and its application to evolution problems
正则平均曲率流及其在演化问题中的应用
  • 批准号:
    23H00085
  • 财政年份:
    2023
  • 资助金额:
    $ 23.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Toward applications of the crystalline mean curvature flow
晶体平均曲率流的应用
  • 批准号:
    23K03212
  • 财政年份:
    2023
  • 资助金额:
    $ 23.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Stability for nonlocal curvature functionals
非局部曲率泛函的稳定性
  • 批准号:
    EP/W014807/2
  • 财政年份:
    2023
  • 资助金额:
    $ 23.39万
  • 项目类别:
    Research Grant
Nonlocal Magneto-Curvature Instabilities and their Associated Nonlinear Transport in Astrophysical Disks
天体物理盘中的非局域磁曲率不稳定性及其相关的非线性输运
  • 批准号:
    2308839
  • 财政年份:
    2023
  • 资助金额:
    $ 23.39万
  • 项目类别:
    Standard Grant
Scalar curvature and geometric variational problems
标量曲率和几何变分问题
  • 批准号:
    2303624
  • 财政年份:
    2023
  • 资助金额:
    $ 23.39万
  • 项目类别:
    Standard Grant
Spaces with Ricci curvature bounded below
具有下界的里奇曲率空间
  • 批准号:
    2304698
  • 财政年份:
    2023
  • 资助金额:
    $ 23.39万
  • 项目类别:
    Standard Grant
The geometry, rigidity and combinatorics of spaces and groups with non-positive curvature feature
具有非正曲率特征的空间和群的几何、刚度和组合
  • 批准号:
    2305411
  • 财政年份:
    2023
  • 资助金额:
    $ 23.39万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了