The geometry, rigidity and combinatorics of spaces and groups with non-positive curvature feature

具有非正曲率特征的空间和群的几何、刚度和组合

基本信息

  • 批准号:
    2305411
  • 负责人:
  • 金额:
    $ 21.73万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Groups are fundamental abstract symbolic systems in mathematics arising from different branches of mathematics, physics, chemistry and computer science. For example, groups appear in the study of shapes of geometric objects, crystals and quasi-crystals, structure of roots of polynomials, cryptography, algorithm design etc. The study of finite groups, i.e. groups with finitely many elements, has reached a fairly mature stage, accumulating to a complete classification of finite simple groups. However, most infinite groups are fairly mysterious and hard to understand. In the 1980s, Gromov proposed a geometric approaches to group theory. One idea was to realize the mysterious group as a collection of symmetries of some geometric objects with interesting curvature properties, allowing us to study groups from the viewpoint of geometry. This has evolved into a very active field called geometric group theory. This proposal aims to study problems in the frontier of geometric group theory, and seeks applications to some long-standing problems in topology. The proposal also aims to provide resources for training graduate students and postdocs working in the area at the Ohio State University, with an emphasis on supporting under-represented early career stage mathematicians at OSU working in this filed.This proposal is concerned with rigidity and curvature properties of some infinite discrete groups from the viewpoint of geometric group theory, combined with ideas and techniques from ergodic theory, metric geometry, metric graph theory and combinatorial group theory. The project has two more specific research goals. The first is to make progress on a major conjecture on Artin groups, using a new strategy motivated from ideas in metric graph theory. The second is to understand fundamental forms of rigidity for discrete groups, namely quasi-isometric rigidity and measure equivalence rigidity. The project emphasizes the close connections between these forms of rigidity and the curvature properties of singular metric spaces and groups. Several classes of groups of fundamental importance are studied, including Artin groups, CAT(0) groups, graph products etc.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
群是数学中的基本抽象符号系统,它起源于数学、物理、化学和计算机科学的不同分支。例如,群出现在几何物体的形状、晶体和准晶体、多项式根的结构、密码学、算法设计等的研究中。有限群的研究,即具有多个元素的群,已经达到相当成熟的阶段,积累到有限单群的完整分类。然而,大多数无限群是相当神秘和难以理解的。在20世纪80年代,Gromov提出了一种几何方法来研究群论。 一个想法是将神秘的群实现为一些具有有趣曲率性质的几何对象的对称性的集合,使我们能够从几何的角度研究群。这已经发展成为一个非常活跃的领域,称为几何群论。这个提议旨在研究几何群论的前沿问题,并寻求应用于拓扑学中一些长期存在的问题。该提案还旨在为培养俄亥俄州州立大学在该领域工作的研究生和博士后提供资源,重点是支持在该领域工作的代表性不足的早期职业生涯阶段的数学家。该提案从几何群论的观点出发,结合遍历理论,度量几何、度量图论和组合群论。该项目有两个更具体的研究目标。首先是取得进展的一个重大猜想阿廷组,使用一种新的战略动机思想度量图论。二是了解离散群刚性的基本形式,即拟等距刚性和测度等价刚性。该项目强调了这些形式的刚性和奇异度量空间和群的曲率性质之间的密切联系。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jingyin Huang其他文献

Proper proximality in non-positive curvature
非正曲率的适当邻近性
  • DOI:
    10.1353/ajm.2023.a907700
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Camille Horbez;Jingyin Huang;Jean L'ecureux
  • 通讯作者:
    Jean L'ecureux
Morse Quasiflats.
莫尔斯准扁平。
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jingyin Huang;Bruce Kleiner;Stephan Stadler
  • 通讯作者:
    Stephan Stadler
Lattices, Garside structures and weakly modular graphs
格子、Garside 结构和弱模块化图
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    T. Haettel;Jingyin Huang
  • 通讯作者:
    Jingyin Huang
Orbit equivalence rigidity of irreducible actions of right-angled Artin groups
直角Artin群不可约作用的轨道等效刚度
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Camille Horbez;Jingyin Huang;A. Ioana
  • 通讯作者:
    A. Ioana
Metric systolicity and two-dimensional Artin groups
公制收缩期和二维 Artin 群
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Jingyin Huang;Damian Osajda
  • 通讯作者:
    Damian Osajda

Jingyin Huang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jingyin Huang', 18)}}的其他基金

Conference: Geometric and Asymptotic Group Theory with Applications 2024
会议:几何和渐近群理论及其应用 2024
  • 批准号:
    2403833
  • 财政年份:
    2024
  • 资助金额:
    $ 21.73万
  • 项目类别:
    Standard Grant
Conference: Geometry and Analysis of Groups and Manifolds
会议:群和流形的几何与分析
  • 批准号:
    2247784
  • 财政年份:
    2023
  • 资助金额:
    $ 21.73万
  • 项目类别:
    Standard Grant
Conference on Hyperbolic Groups and Their Generalizations
双曲群及其推广会议
  • 批准号:
    2203429
  • 财政年份:
    2022
  • 资助金额:
    $ 21.73万
  • 项目类别:
    Standard Grant

相似海外基金

Group Actions, Rigidity, and Invariant Measures
群体行动、刚性和不变措施
  • 批准号:
    2400191
  • 财政年份:
    2024
  • 资助金额:
    $ 21.73万
  • 项目类别:
    Standard Grant
Conference: Groups Actions and Rigidity: Around the Zimmer Program
会议:团体行动和刚性:围绕 Zimmer 计划
  • 批准号:
    2349566
  • 财政年份:
    2024
  • 资助金额:
    $ 21.73万
  • 项目类别:
    Standard Grant
CAREER: Rigidity in Mapping class groups and homeomorphism groups
职业:映射类群和同胚群中的刚性
  • 批准号:
    2339110
  • 财政年份:
    2024
  • 资助金额:
    $ 21.73万
  • 项目类别:
    Continuing Grant
THE ROLE OF MEDIUM SPINY NEURONS IN SLEEP DEPRIVATION-INDUCED COGNITIVE RIGIDITY.
中型棘神经元在睡眠剥夺引起的认知僵化中的作用。
  • 批准号:
    10656057
  • 财政年份:
    2023
  • 资助金额:
    $ 21.73万
  • 项目类别:
Transcutaneous Phrenic Nerve Stimulation for Treating Opioid Overdose
经皮膈神经刺激治疗阿片类药物过量
  • 批准号:
    10681111
  • 财政年份:
    2023
  • 资助金额:
    $ 21.73万
  • 项目类别:
Rigidity and boundary phenomena for geometric variational problems
几何变分问题的刚性和边界现象
  • 批准号:
    DE230100415
  • 财政年份:
    2023
  • 资助金额:
    $ 21.73万
  • 项目类别:
    Discovery Early Career Researcher Award
Characterizing and modulating motor cortical dynamics underlying rapid sequence learning in primates
表征和调节灵长类动物快速序列学习背后的运动皮层动力学
  • 批准号:
    10677450
  • 财政年份:
    2023
  • 资助金额:
    $ 21.73万
  • 项目类别:
Pioneering arithmetic topology around cyclotomic units and application to profinite rigidity
围绕分圆单元的开创性算术拓扑及其在有限刚度上的应用
  • 批准号:
    23K12969
  • 财政年份:
    2023
  • 资助金额:
    $ 21.73万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Constraints, Rigidity, and Risk in Global Supply Chains
全球供应链的约束、刚性和风险
  • 批准号:
    2315629
  • 财政年份:
    2023
  • 资助金额:
    $ 21.73万
  • 项目类别:
    Standard Grant
Singularities and rigidity in geometric evolution equations
几何演化方程中的奇异性和刚性
  • 批准号:
    2304684
  • 财政年份:
    2023
  • 资助金额:
    $ 21.73万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了