Recovery, Representation, and Recognition of Two and Three-Dimensional Shape from Real Images
真实图像中二维和三维形状的恢复、表示和识别
基本信息
- 批准号:9700497
- 负责人:
- 金额:$ 31.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-03-01 至 2001-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research is concerned with the problem of recovery, representation, and recognition of two and three-dimensional shape from real images. Building on the results of previous NSF- funded research on deriving a representation for segmented shape that is robust to variations in the visual scene, the current effort focuses on deriving such representations directly from real images of appreciable complexity, involving partial occlusion, gaps, spurious edges, and noise. Two key complementary approaches are proposed. The first relies on a local formulation of deformation and shock formation by propagating local, labeled waves directly from edge elements and detecting, classifying, grouping, and labeling the formed singularities (shocks) to recover partial shock segments from partial contour segments, shock-based partitioning of shapes in grey-scale images prior to segmentation, and completion of missing contours. Secondary (interpenetrating) waves and a set of shock transformations are proposed to deal with alterations due to partial occlusion, gaps, and spurious edge elements. The second approach is complementary to the first and captures regional continuity by randomly initializing object hypotheses as fourth-order shocks (seeds), which then grow based on the output of low-level processes. The research is motivated by segmentation and registration problems in 3D and will focus on two key areas: 1) the formalization of a classification of 3D shocks, the development of a shock grammar, and the implementation of robust numerical schemes for their detection; and 2) the development of a geometric notion of scale in 3D by devising a surface evolution scheme of diffusion, thus generalizing the reaction-diffusion space to 3D. The overall approach reflects visual modeling by sets of coupled systems of PDEs, a paradigm which allows for simultaneous interaction of boundary and regio n processes as well as bottom-up/top-down communication.
这 研究涉及从真实的图像恢复、表示和识别二维和三维形状的问题。基于先前NSF资助的研究结果,导出对视觉场景变化具有鲁棒性的分段形状表示,当前的努力集中在导出这样的表示 直接从真实的 图像 具有明显的复杂性,涉及 部分遮挡、间隙、虚假边缘和噪声。提出了两个关键的互补办法。第一种依赖于变形和冲击形成的局部公式化,其通过直接从边缘元素传播局部标记的波并且检测、分类、分组和标记所形成的奇点(冲击)以从部分轮廓段恢复部分冲击段,在分割之前对灰度图像中的形状进行基于冲击的分割,和缺失轮廓的完成。 二次(互穿)波和一组冲击变换,提出了处理由于部分闭塞,间隙,和虚假的边缘元素的改变。第二种方法是第一种方法的补充,通过随机初始化对象假设作为四阶冲击(种子),然后根据低级别过程的输出增长,从而捕获区域连续性。 该研究的动机是在3D分割和配准问题,并将集中在两个关键领域:1)形式化的分类的3D冲击,冲击文法的发展,并实施强大的数值计划,他们的检测; 2)通过设计扩散的表面演化方案,发展了三维尺度的几何概念,从而将反应扩散空间推广到三维。 整体方法反映了可视化建模的耦合系统的偏微分方程,一个范例,允许同时互动的边界和区域的过程,以及自下而上/自上而下的通信。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin Kimia其他文献
Minimal Solutions to Generalized Three-View Relative Pose Problem
广义三视图相对位姿问题的最小解
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yaqing Ding;Chiang;Viktor Larsson;Karl Åström;Benjamin Kimia - 通讯作者:
Benjamin Kimia
Parallel Path Tracking for Homotopy Continuation using GPU
使用 GPU 进行同伦延拓的并行路径跟踪
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Chiang-Heng Chien;Hongyi Fan;Ahmad Abdelfattah;Elias Tsigaridas;Stanimire Tomov;Benjamin Kimia - 通讯作者:
Benjamin Kimia
Condition numbers in multiview geometry, instability in relative pose estimation, and RANSAC
多视图几何中的条件数、相对位姿估计中的不稳定性以及 RANSAC
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Hongyi Fan;J. Kileel;Benjamin Kimia - 通讯作者:
Benjamin Kimia
Benjamin Kimia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benjamin Kimia', 18)}}的其他基金
Collaborative Research: RI: Medium: Bridging the Semantic-Metric Gap via Multinocular Image Integration
合作研究:RI:Medium:通过多目图像集成弥合语义度量差距
- 批准号:
2312745 - 财政年份:2023
- 资助金额:
$ 31.29万 - 项目类别:
Standard Grant
RI: Small: A Differential Geometry Paradigm for Constructing a Semantic Mid-Level Representation for Multinocular Pose Estimation and Reconstruction
RI:小:为多目姿态估计和重建构建语义中级表示的微分几何范式
- 批准号:
1910530 - 财政年份:2019
- 资助金额:
$ 31.29万 - 项目类别:
Standard Grant
RI: Small: A Generic Mid-Level Representation as Object Part Hypotheses for Scalable Object Category Recognition
RI:小:作为可扩展对象类别识别的对象部分假设的通用中级表示
- 批准号:
1319914 - 财政年份:2013
- 资助金额:
$ 31.29万 - 项目类别:
Standard Grant
RI: CGV: Small: Multiview Reconstruction and Calibration Using Differential Geometry of Curve Fragments and Surface Patches
RI:CGV:小:使用曲线片段和表面补丁的微分几何进行多视图重建和校准
- 批准号:
1116140 - 财政年份:2011
- 资助金额:
$ 31.29万 - 项目类别:
Standard Grant
EAGER: A Metric Space Embedding of Object Fragments and Object Categories for Object Recognition and Segmentation
EAGER:用于对象识别和分割的对象片段和对象类别的度量空间嵌入
- 批准号:
0957045 - 财政年份:2009
- 资助金额:
$ 31.29万 - 项目类别:
Standard Grant
Symmetry-based Representation of 2D and 3D shapes and images for category-level recognition
用于类别级识别的 2D 和 3D 形状和图像的基于对称性的表示
- 批准号:
0413215 - 财政年份:2004
- 资助金额:
$ 31.29万 - 项目类别:
Standard Grant
Symmetry Map and Symmetry Transforms for Shape Recovery and Object Recognition
用于形状恢复和对象识别的对称图和对称变换
- 批准号:
0083231 - 财政年份:2000
- 资助金额:
$ 31.29万 - 项目类别:
Continuing Grant
"A Hamilton-Jacobi Formulation of a Robust Object Recognition System"
“鲁棒物体识别系统的汉密尔顿-雅可比公式”
- 批准号:
9305630 - 财政年份:1993
- 资助金额:
$ 31.29万 - 项目类别:
Continuing Grant
相似海外基金
Sonar Foundational Model for Representation Learning and Automatic Target Recognition Systems in Underwater Maritime Environment
水下海洋环境中表示学习和自动目标识别系统的声纳基础模型
- 批准号:
2903803 - 财政年份:2024
- 资助金额:
$ 31.29万 - 项目类别:
Studentship
Feature Representation Learning and Imagined Speech Recognition by Simultaneous Recording of Spoken Language Stimuli and EEG
通过同时记录口语刺激和脑电图进行特征表示学习和想象语音识别
- 批准号:
22K19828 - 财政年份:2022
- 资助金额:
$ 31.29万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Applications of Sparse Representation, Low Rank Approximation and Dictionary Learning to Image Processing, Pattern Recognition and Computer Vision
稀疏表示、低秩近似和字典学习在图像处理、模式识别和计算机视觉中的应用
- 批准号:
RGPIN-2016-05467 - 财政年份:2021
- 资助金额:
$ 31.29万 - 项目类别:
Discovery Grants Program - Individual
Applications of Sparse Representation, Low Rank Approximation and Dictionary Learning to Image Processing, Pattern Recognition and Computer Vision
稀疏表示、低秩近似和字典学习在图像处理、模式识别和计算机视觉中的应用
- 批准号:
RGPIN-2016-05467 - 财政年份:2020
- 资助金额:
$ 31.29万 - 项目类别:
Discovery Grants Program - Individual
Efffect of amygdalar activity on recognition and neural representation of facial information
杏仁核活动对面部信息识别和神经表征的影响
- 批准号:
19K07811 - 财政年份:2019
- 资助金额:
$ 31.29万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Applications of Sparse Representation, Low Rank Approximation and Dictionary Learning to Image Processing, Pattern Recognition and Computer Vision
稀疏表示、低秩近似和字典学习在图像处理、模式识别和计算机视觉中的应用
- 批准号:
RGPIN-2016-05467 - 财政年份:2019
- 资助金额:
$ 31.29万 - 项目类别:
Discovery Grants Program - Individual
Applications of Sparse Representation, Low Rank Approximation and Dictionary Learning to Image Processing, Pattern Recognition and Computer Vision
稀疏表示、低秩近似和字典学习在图像处理、模式识别和计算机视觉中的应用
- 批准号:
RGPIN-2016-05467 - 财政年份:2018
- 资助金额:
$ 31.29万 - 项目类别:
Discovery Grants Program - Individual
Applications of Sparse Representation, Low Rank Approximation and Dictionary Learning to Image Processing, Pattern Recognition and Computer Vision
稀疏表示、低秩近似和字典学习在图像处理、模式识别和计算机视觉中的应用
- 批准号:
RGPIN-2016-05467 - 财政年份:2017
- 资助金额:
$ 31.29万 - 项目类别:
Discovery Grants Program - Individual
Applications of Sparse Representation, Low Rank Approximation and Dictionary Learning to Image Processing, Pattern Recognition and Computer Vision
稀疏表示、低秩近似和字典学习在图像处理、模式识别和计算机视觉中的应用
- 批准号:
RGPIN-2016-05467 - 财政年份:2016
- 资助金额:
$ 31.29万 - 项目类别:
Discovery Grants Program - Individual
Applications of Sparse Representation, Low Rank Approximation and Dictionary Learning to Image Processing and Pattern Recognition
稀疏表示、低秩逼近和字典学习在图像处理和模式识别中的应用
- 批准号:
RGPIN-2015-06254 - 财政年份:2015
- 资助金额:
$ 31.29万 - 项目类别:
Discovery Grants Program - Individual