Applications of Sparse Representation, Low Rank Approximation and Dictionary Learning to Image Processing, Pattern Recognition and Computer Vision
稀疏表示、低秩近似和字典学习在图像处理、模式识别和计算机视觉中的应用
基本信息
- 批准号:RGPIN-2016-05467
- 负责人:
- 金额:$ 2.26万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Human vision is good at detecting objects such as human faces under various conditions: illumination, occlusions, and poses. Training the computer to mimic human vision has occupied scientists and engineers for many years. One of the major problems is dealing with very large amount of image data. Since images such as human faces or video frames can be stored in large matrices or tensors, the research in large scale data analysis for matrices and tensors has become a hot topic. In particular, techniques such as sparse representation, low rank approximation, dictionary learning, robust principal component analysis, and multi-linear principal component analysis have brought much attention and are powerful tools in image/video processing, pattern recognition and computer vision. A common problem among these techniques is the need for efficient computational methods for optimizing the related objective functions. An efficient optimization technique will lead to a significant reduction in computational costs as well as an improvement on accuracy of the solutions. Furthermore, real data sets are often incomplete with many dimensions or elements missing. They may contain corrupted information due to measurement or communication errors. Hence the analysis of large data sets coming from real-world problems has been one of the most challenging tasks. As an example, in biometrics, face recognition under a combined effect of illumination, resolution, orientation, expression, and occlusion has been one of the major problems in computer vision. The objective of this research is to develop models and solution methods that can be applied to the problems mentioned above and common mathematical problems will be investigated. Specifically we are concerned with three main issues: (1) Development of common models and frameworks for the analysis of large scale image datasets; (2) Analysis of different factors that affect the systems such as the choice of input data for training, and the limitation of the proposed techniques; and (3) Implementation, experimentation and testing of the new models and techniques. The proposed work can have significant impact on many areas including image/video processing, computer vision, security, biometrics, telecommunications, remote sensing, and bioinformatics. One of the applications of our work is on face age progression that can be useful for the investigation of missing children.
人类的视觉擅长在各种条件下检测人脸等物体:光照、遮挡和姿势。多年来,科学家和工程师一直在训练计算机模仿人类的视觉。其中一个主要问题是处理大量的图像数据。由于人脸或视频帧等图像可以存储在大矩阵或张量中,因此对矩阵和张量的大规模数据分析研究已成为一个热点。特别是,稀疏表示、低秩近似、字典学习、鲁棒主成分分析和多线性主成分分析等技术引起了人们的广泛关注,并成为图像/视频处理、模式识别和计算机视觉领域的强大工具。这些技术中的一个共同问题是需要有效的计算方法来优化相关的目标函数。一个有效的优化技术将导致计算成本的显著降低以及解决方案的精度的提高。此外,真实的数据集往往是不完整的,有许多维度或元素缺失。它们可能包含由于测量或通信错误而损坏的信息。因此,对来自现实问题的大型数据集的分析一直是最具挑战性的任务之一。例如,在生物识别中,光照、分辨率、方向、表情和遮挡等综合作用下的人脸识别一直是计算机视觉中的主要问题之一。本研究的目的是开发可应用于上述问题的模型和解决方法,并将研究常见的数学问题。具体来说,我们关注三个主要问题:(1)开发用于大规模图像数据集分析的通用模型和框架;(2)分析影响系统的不同因素,如训练输入数据的选择,以及所提出的技术的局限性;(3)新模式和新技术的实施、实验和测试。建议的工作可以对许多领域产生重大影响,包括图像/视频处理,计算机视觉,安全,生物识别,电信,遥感和生物信息学。我们工作的一个应用是面部年龄的变化,这对失踪儿童的调查很有用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bui, Tien其他文献
Multilocus variable-number tandem-repeat analysis of clinical isolates of Aspergillus flavus from Iran reveals the first cases of Aspergillus minisclerotigenes associated with human infection
- DOI:
10.1186/1471-2334-14-358 - 发表时间:
2014-07-01 - 期刊:
- 影响因子:3.7
- 作者:
Dehghan, Parvin;Bui, Tien;Carter, Dee A. - 通讯作者:
Carter, Dee A.
Isolates of Cryptococcus neoformans from Infected Animals Reveal Genetic Exchange in Unisexual, α Mating Type Populations
- DOI:
10.1128/ec.00097-08 - 发表时间:
2008-10-01 - 期刊:
- 影响因子:0
- 作者:
Bui, Tien;Lin, Xiaorong;Carter, Dee - 通讯作者:
Carter, Dee
Bui, Tien的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bui, Tien', 18)}}的其他基金
Applications of Sparse Representation, Low Rank Approximation and Dictionary Learning to Image Processing, Pattern Recognition and Computer Vision
稀疏表示、低秩近似和字典学习在图像处理、模式识别和计算机视觉中的应用
- 批准号:
RGPIN-2016-05467 - 财政年份:2021
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Applications of Sparse Representation, Low Rank Approximation and Dictionary Learning to Image Processing, Pattern Recognition and Computer Vision
稀疏表示、低秩近似和字典学习在图像处理、模式识别和计算机视觉中的应用
- 批准号:
RGPIN-2016-05467 - 财政年份:2019
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Applications of Sparse Representation, Low Rank Approximation and Dictionary Learning to Image Processing, Pattern Recognition and Computer Vision
稀疏表示、低秩近似和字典学习在图像处理、模式识别和计算机视觉中的应用
- 批准号:
RGPIN-2016-05467 - 财政年份:2018
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Applications of Sparse Representation, Low Rank Approximation and Dictionary Learning to Image Processing, Pattern Recognition and Computer Vision
稀疏表示、低秩近似和字典学习在图像处理、模式识别和计算机视觉中的应用
- 批准号:
RGPIN-2016-05467 - 财政年份:2017
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Applications of Sparse Representation, Low Rank Approximation and Dictionary Learning to Image Processing, Pattern Recognition and Computer Vision
稀疏表示、低秩近似和字典学习在图像处理、模式识别和计算机视觉中的应用
- 批准号:
RGPIN-2016-05467 - 财政年份:2016
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Applications of Sparse Representation, Low Rank Approximation and Dictionary Learning to Image Processing and Pattern Recognition
稀疏表示、低秩逼近和字典学习在图像处理和模式识别中的应用
- 批准号:
RGPIN-2015-06254 - 财政年份:2015
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Computational methods for image processing understanding and recognition
图像处理理解和识别的计算方法
- 批准号:
9265-2010 - 财政年份:2014
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Computational methods for image processing understanding and recognition
图像处理理解和识别的计算方法
- 批准号:
9265-2010 - 财政年份:2013
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Automatic Processing, Classification and Retrieval of Unconstrained Digital Documents
无约束数字文档的自动处理、分类和检索
- 批准号:
395169-2009 - 财政年份:2012
- 资助金额:
$ 2.26万 - 项目类别:
Collaborative Research and Development Grants
Computational methods for image processing understanding and recognition
图像处理理解和识别的计算方法
- 批准号:
9265-2010 - 财政年份:2012
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
基于Sparse-Land模型的SAR图像噪声抑制与分割
- 批准号:60971128
- 批准年份:2009
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
Applications of Sparse Representation, Low Rank Approximation and Dictionary Learning to Image Processing, Pattern Recognition and Computer Vision
稀疏表示、低秩近似和字典学习在图像处理、模式识别和计算机视觉中的应用
- 批准号:
RGPIN-2016-05467 - 财政年份:2021
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Fast, Accurate and Automatic Segmentation and Classification of Ophthalmic Optical Coherence Tomography Images Based on Sparse Representation
基于稀疏表示的眼科光学相干断层扫描图像快速、准确、自动分割与分类
- 批准号:
RGPIN-2016-04218 - 财政年份:2021
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Fast, Accurate and Automatic Segmentation and Classification of Ophthalmic Optical Coherence Tomography Images Based on Sparse Representation
基于稀疏表示的眼科光学相干断层扫描图像快速、准确、自动分割与分类
- 批准号:
RGPIN-2016-04218 - 财政年份:2020
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Convolutional sparse representation of l1 norm error criterion and its development for distributed video coding and deep learning
l1范数误差准则的卷积稀疏表示及其在分布式视频编码和深度学习中的发展
- 批准号:
20K11878 - 财政年份:2020
- 资助金额:
$ 2.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fast, Accurate and Automatic Segmentation and Classification of Ophthalmic Optical Coherence Tomography Images Based on Sparse Representation
基于稀疏表示的眼科光学相干断层扫描图像快速、准确、自动分割与分类
- 批准号:
RGPIN-2016-04218 - 财政年份:2019
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Applications of Sparse Representation, Low Rank Approximation and Dictionary Learning to Image Processing, Pattern Recognition and Computer Vision
稀疏表示、低秩近似和字典学习在图像处理、模式识别和计算机视觉中的应用
- 批准号:
RGPIN-2016-05467 - 财政年份:2019
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Fast, Accurate and Automatic Segmentation and Classification of Ophthalmic Optical Coherence Tomography Images Based on Sparse Representation
基于稀疏表示的眼科光学相干断层扫描图像快速、准确、自动分割与分类
- 批准号:
RGPIN-2016-04218 - 财政年份:2018
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Applications of Sparse Representation, Low Rank Approximation and Dictionary Learning to Image Processing, Pattern Recognition and Computer Vision
稀疏表示、低秩近似和字典学习在图像处理、模式识别和计算机视觉中的应用
- 批准号:
RGPIN-2016-05467 - 财政年份:2018
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Construction of low-computation and memory-saving convolutional sparse representation technology
低计算、节省内存的卷积稀疏表示技术构建
- 批准号:
18K11367 - 财政年份:2018
- 资助金额:
$ 2.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Sparse data representation in Bio-medicine
生物医学中的稀疏数据表示
- 批准号:
524361-2018 - 财政年份:2018
- 资助金额:
$ 2.26万 - 项目类别:
University Undergraduate Student Research Awards