Applications of Probability to Problems in Analysis

概率在分析问题中的应用

基本信息

  • 批准号:
    9700585
  • 负责人:
  • 金额:
    $ 20.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-06-01 至 2001-05-31
  • 项目状态:
    已结题

项目摘要

Banuelos 9700585 The Principle Investigator will investigate several concrete open problems in different areas of analysis where probabilistic ideas and techniques have already had considerable success and where he believes further progress is possible. These include 1) applications of martingale inequalities to investigate the operator norm of the Beurling- Ahlfors operators in two and several dimensions, 2) the use of Brownian motions to investigate sharp bounds for the fundamental frequency and fundamental gap of the Laplacian in Euclidean domains, and 3) the use of asymptotic expansions for Wiener functionals to investigate the asymptotic expansion in the trace of Schrodinger operators and how the signs of the coefficients in such expansion depend on the sign of the potential. Probability Theory has its roots in various fields of applied sciences and hence it should not be surprising that modern stochastic analysis draws many of its technical tools from several distinct areas of mathematics. What is often far from obvious is that probabilistic ideas and techniques can be effectively used to investigate problems and applications which on the surface do not seem to be related to probability at all. The problems discussed above fall in this category. The Beurling-Ahlfors operators are (singular) integral operators which describe regularity (smoothness) properties of solutions to various nonlinear equations arising from, among other topics, elasticity. The computation of their operator norms is a fundamental problem with many applications. On the surface this operator appears to be very far from probability. The Principal Investigator, in collaboration with G. Wang and A. J. Lindeman, has successfully used the theory of martingales (fair games) to study this problem. The first part of the project describes various new probabilistic approaches for further work in this direction. Bounds on the fundamental frequency and fundament al gap of the Laplacian operator are basic quantities in the theory of vibrating membranes. The trace of Schrodinger operators plays a fundamental role in various problems in mathematical physics related to, among other things, scattering theory. Here, too, the connection to probability is not transparent. In the second part of the project the PI proposes to use the theory of Brownian motion and stochastic calculus to investigate several open problems in this areas. It is expected that these investigations will lead, as it has happened many times in the past, to new and surprising applications of probability to analysis, geometry, partial differential equations, and the application of these subjects to mathematical physics. Several students will most likely participate in these investigations.
巴纽艾洛斯 9700585 首席研究员将调查几个具体的开放问题, 不同的分析领域,概率思想和技术已经有了 在这方面取得了很大的成功,他认为有可能取得进一步的进展。其中包括1) 应用鞅不等式研究二维和多维Beurling-Ahlfors算子的算子范数,2)利用布朗运动, 研究的基本频率和基本差距的尖锐界限, 拉普拉斯在欧几里德域,和3)使用的渐近展开的维纳 研究Schrodinger算子迹的渐近展开 以及在这种展开中系数的符号如何取决于 潜力 概率论植根于应用科学的各个领域,因此它应该 这并不奇怪,现代随机分析的许多技术工具都来自于 几个不同的数学领域 通常不太明显的是, 思想和技术可以有效地用于研究问题和应用 从表面上看,这似乎与概率无关。的问题 上面讨论的都属于这一类。 Beurling-Ahlfors算子是(奇异的) 积分算子描述解的正则性(光滑性) 各种非线性方程产生的,除其他事项外,弹性。 计算 其算子范数的确定是一个具有许多应用的基本问题。 表面上 这个操作符看起来离概率很远。 首席研究员,在 与G。Wang和A.林德曼成功地运用了 鞅(公平博弈)来研究这个问题。 该项目的第一部分描述了 各种新的概率方法在这个方向上进一步的工作。 的界 拉普拉斯算子的基频和基隙是基本量 振动膜理论中最重要的一点薛定谔算子的迹起着 在数学物理的各种问题中的基本作用,除其他外, 散射理论在这里,与概率的联系也是不透明的。在 项目的第二部分PI建议使用布朗运动理论, 随机微积分,探讨在这方面的几个开放的问题。预计在 正如过去多次发生的那样,这些调查将导致新的, 概率在分析、几何、偏微分方程 以及这些学科在数学物理中的应用。大多数学生将 可能参与了这些调查。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rodrigo Banuelos其他文献

On a conjecture of a P'olya functional for triangles and rectangles
关于三角形和矩形的 Polya 泛函的猜想
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rodrigo Banuelos;Phanuel Mariano
  • 通讯作者:
    Phanuel Mariano

Rodrigo Banuelos的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rodrigo Banuelos', 18)}}的其他基金

Sharp Inequalities
严重的不平等
  • 批准号:
    1854709
  • 财政年份:
    2019
  • 资助金额:
    $ 20.42万
  • 项目类别:
    Standard Grant
Spectral asymptotics for stable processes
稳定过程的谱渐近
  • 批准号:
    1403417
  • 财政年份:
    2014
  • 资助金额:
    $ 20.42万
  • 项目类别:
    Standard Grant
Levy Processes, Martingales and Spectral Theory
Levy 过程、鞅和谱理论
  • 批准号:
    1005844
  • 财政年份:
    2010
  • 资助金额:
    $ 20.42万
  • 项目类别:
    Continuing Grant
Survival Time Probabilities and Applications to Hot-Spots and Spectral Gaps
生存时间概率及其在热点和光谱间隙中的应用
  • 批准号:
    0603701
  • 财政年份:
    2006
  • 资助金额:
    $ 20.42万
  • 项目类别:
    Continuing Grant
Brownian motion with killing and reflection, stable processes and projections of martingales
具有杀伤和反射的布朗运动、稳定过程和鞅投影
  • 批准号:
    0303259
  • 财政年份:
    2003
  • 资助金额:
    $ 20.42万
  • 项目类别:
    Standard Grant
In Search of Sharp Inequalities
寻找尖锐的不平等
  • 批准号:
    0072037
  • 财政年份:
    2000
  • 资助金额:
    $ 20.42万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Explorations in Brownian Motion, Intrinsic Ultracontractivity, Martingales and Lancunary Series
数学科学:布朗运动、本征超收缩性、鞅和 Lancunary 级数的探索
  • 批准号:
    9400854
  • 财政年份:
    1994
  • 资助金额:
    $ 20.42万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Presidential Young Investigator Award
数学科学:总统青年研究员奖
  • 批准号:
    8958449
  • 财政年份:
    1989
  • 资助金额:
    $ 20.42万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Brownian Motion, Martingales and Applications
数学科学:布朗运动、鞅及其应用
  • 批准号:
    8901164
  • 财政年份:
    1989
  • 资助金额:
    $ 20.42万
  • 项目类别:
    Continuing Grant
Mathematical Sciences Postdoctoral Research Fellowship
数学科学博士后研究奖学金
  • 批准号:
    8605713
  • 财政年份:
    1986
  • 资助金额:
    $ 20.42万
  • 项目类别:
    Fellowship Award

相似海外基金

Intertwining ideas for some problems in probability
一些概率问题的相互交织的想法
  • 批准号:
    2246766
  • 财政年份:
    2023
  • 资助金额:
    $ 20.42万
  • 项目类别:
    Standard Grant
Some Problems in Spectral Methods and Discrete Probability
谱方法和离散概率中的一些问题
  • 批准号:
    RGPIN-2019-06751
  • 财政年份:
    2022
  • 资助金额:
    $ 20.42万
  • 项目类别:
    Discovery Grants Program - Individual
Isoperimetric Clusters and Related Extremal Problems with Applications in Probability
等周簇和相关极值问题及其在概率中的应用
  • 批准号:
    2204449
  • 财政年份:
    2022
  • 资助金额:
    $ 20.42万
  • 项目类别:
    Standard Grant
Qualitative asymptotic problems in ergodic theory and probability
遍历理论和概率中的定性渐近问题
  • 批准号:
    RGPIN-2022-05066
  • 财政年份:
    2022
  • 资助金额:
    $ 20.42万
  • 项目类别:
    Discovery Grants Program - Individual
Some Problems in Spectral Methods and Discrete Probability
谱方法和离散概率中的一些问题
  • 批准号:
    RGPIN-2019-06751
  • 财政年份:
    2021
  • 资助金额:
    $ 20.42万
  • 项目类别:
    Discovery Grants Program - Individual
Some Problems in Spectral Methods and Discrete Probability
谱方法和离散概率中的一些问题
  • 批准号:
    RGPIN-2019-06751
  • 财政年份:
    2020
  • 资助金额:
    $ 20.42万
  • 项目类别:
    Discovery Grants Program - Individual
Some Problems in Spectral Methods and Discrete Probability
谱方法和离散概率中的一些问题
  • 批准号:
    RGPIN-2019-06751
  • 财政年份:
    2019
  • 资助金额:
    $ 20.42万
  • 项目类别:
    Discovery Grants Program - Individual
Representation-theoretic approaches to several problems in probability theory
概率论中几个问题的表示论方法
  • 批准号:
    1936327
  • 财政年份:
    2017
  • 资助金额:
    $ 20.42万
  • 项目类别:
    Studentship
Contemporary Problems in Probability and Statistics:Gaussian Approximations and Small Deviations for Stochastic Processes
当代概率与统计问题:随机过程的高斯近似和小偏差
  • 批准号:
    323605340
  • 财政年份:
    2017
  • 资助金额:
    $ 20.42万
  • 项目类别:
    Research Grants
Tensor product numerical methods for high-dimensional problems in probability and quantum calculations
概率和量子计算中高维问题的张量积数值方法
  • 批准号:
    EP/M019004/1
  • 财政年份:
    2016
  • 资助金额:
    $ 20.42万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了