Isoperimetric Clusters and Related Extremal Problems with Applications in Probability
等周簇和相关极值问题及其在概率中的应用
基本信息
- 批准号:2204449
- 负责人:
- 金额:$ 6.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The isoperimetric problem in the plane -- which has been known and studied for more than 2 millennia -- asks which shape of a given area has a minimal perimeter (the answer: a circle). The last hundred years have seen significant advances and generalizations in two directions: on one hand, we now how how to study related problems on other spaces including on the sphere, in hyperbolic space, and in Gaussian space. On the other hand, in some situations we can describe what happens when we optimize multiple sets at the same time. In particular, we can describe what happens to soap bubbles when they touch, which also gives insight into the structure of foams. Surprisingly, these geometric problems have a close link to computational complexity: is it widely believed that many important computational problems cannot be solved efficiently. More importantly for applications (because in practice we don't often need exact solutions), it's computationally hard even to approximately solve some of these problems. The field that studies this topic, known as "hardness of approximation," has progressed in leaps and bounds over the last two decades, and one of its seminal achievements was the forging of a deep connection between computational complexity and isoperimetric-type problems in geometry and probability. If we had a better understanding of certain probabilistic, high-dimensional, multi-part isoperimetric problems, it would close several open problems in hardness of approximation. The project will also develop software for numerical computation and support the advising and mentoring of students.This project is about introducing and exploiting new techniques for multi-part isoperimetric problems, with an emphasis on both problems that are natural in geometry (such as the double-bubble conjecture on the sphere) and problems coming from computer science. One of the difficulties with these partitioning problems is the presence of combinatorially many saddle points or local minima, but the investigator's recent resolution (with E. Milman) of the Gaussian double-bubble conjecture included a new method to circumvent this difficulty; the PI will build on this success by extending the method to related settings. This project will allow graduate and undergraduate students to participate in related research projects, it will aid the development of open-source software for numerical computation, and it will support outreach activities for K-12 students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
平面上的等周问题--已经被知道和研究了2000多年--询问给定区域的哪个形状具有最小周长(答案:圆)。在过去的一百年里,我们在两个方向上看到了重大的进步和推广:一方面,我们现在如何研究其他空间上的相关问题,包括球面上,双曲空间和高斯空间。另一方面,在某些情况下,我们可以描述当我们同时优化多个集合时会发生什么。特别是,我们可以描述肥皂泡在接触时会发生什么,这也可以深入了解泡沫的结构。令人惊讶的是,这些几何问题与计算复杂性有着密切的联系:人们普遍认为,许多重要的计算问题无法有效地解决。更重要的是,对于应用程序(因为在实践中,我们通常不需要精确的解决方案),即使是近似解决其中一些问题,也很难计算。研究这一主题的领域,被称为“近似的硬度”,在过去的二十年里取得了飞跃性的进展,其开创性的成就之一是在计算复杂性和几何和概率中的等周型问题之间建立了深刻的联系。如果我们对某些概率的、高维的、多部分的等周问题有了更好的理解,就可以解决几个在逼近困难方面的未决问题。 该项目还将开发用于数值计算的软件,并支持对学生的咨询和指导。该项目是关于引入和开发多部分等周问题的新技术,重点是几何中的自然问题(如球面上的双气泡猜想)和来自计算机科学的问题。这些划分问题的困难之一是组合上存在许多鞍点或局部极小值,但研究人员最近的解决方案(与E。Milman)提出了一种新的方法来克服这一困难; PI将在这一成功的基础上将该方法扩展到相关的环境中。该项目将允许研究生和本科生参与相关的研究项目,它将帮助开发用于数值计算的开源软件,并将支持K-12学生的外展活动。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph Neeman其他文献
Joseph Neeman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joseph Neeman', 18)}}的其他基金
CAREER: Learning, testing, and hardness via extremal geometric problems
职业:通过极值几何问题学习、测试和硬度
- 批准号:
2145800 - 财政年份:2022
- 资助金额:
$ 6.24万 - 项目类别:
Continuing Grant
相似国自然基金
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
相似海外基金
Multiple clusters in health-related data: modeling, detection, and evaluation
健康相关数据中的多个集群:建模、检测和评估
- 批准号:
21H03402 - 财政年份:2021
- 资助金额:
$ 6.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Synthetic Inorganic Chemistry Related to the Nitrogenase Cofactor: Core Heteroligated Fe-S-X Cubanes and Higher Nuclearity Clusters
与固氮酶辅因子相关的合成无机化学:核心杂合 Fe-S-X 古巴烷和高核簇
- 批准号:
RGPIN-2015-05210 - 财政年份:2019
- 资助金额:
$ 6.24万 - 项目类别:
Discovery Grants Program - Individual
Synthetic Inorganic Chemistry Related to the Nitrogenase Cofactor: Core Heteroligated Fe-S-X Cubanes and Higher Nuclearity Clusters
与固氮酶辅因子相关的合成无机化学:核心杂合 Fe-S-X 古巴烷和高核簇
- 批准号:
RGPIN-2015-05210 - 财政年份:2018
- 资助金额:
$ 6.24万 - 项目类别:
Discovery Grants Program - Individual
Synthetic Inorganic Chemistry Related to the Nitrogenase Cofactor: Core Heteroligated Fe-S-X Cubanes and Higher Nuclearity Clusters
与固氮酶辅因子相关的合成无机化学:核心杂合 Fe-S-X 古巴烷和高核簇
- 批准号:
RGPIN-2015-05210 - 财政年份:2017
- 资助金额:
$ 6.24万 - 项目类别:
Discovery Grants Program - Individual
Synthetic Inorganic Chemistry Related to the Nitrogenase Cofactor: Core Heteroligated Fe-S-X Cubanes and Higher Nuclearity Clusters
与固氮酶辅因子相关的合成无机化学:核心杂合 Fe-S-X 古巴烷和高核簇
- 批准号:
RGPIN-2015-05210 - 财政年份:2016
- 资助金额:
$ 6.24万 - 项目类别:
Discovery Grants Program - Individual
Synthetic Inorganic Chemistry Related to the Nitrogenase Cofactor: Core Heteroligated Fe-S-X Cubanes and Higher Nuclearity Clusters
与固氮酶辅因子相关的合成无机化学:核心杂合 Fe-S-X 古巴烷和高核簇
- 批准号:
RGPIN-2015-05210 - 财政年份:2015
- 资助金额:
$ 6.24万 - 项目类别:
Discovery Grants Program - Individual
Tetrahedral gold(I) clusters and related coinage metal clusters stabilized by boranylethynyl ligands
由硼基乙炔基配体稳定的四面体金(I)簇和相关造币金属簇
- 批准号:
228472253 - 财政年份:2012
- 资助金额:
$ 6.24万 - 项目类别:
Research Grants
Accelerated CV Aging in Youth Related to CV Risk Factor Clusters
与心血管危险因素群相关的青少年心血管加速老化
- 批准号:
8588974 - 财政年份:2011
- 资助金额:
$ 6.24万 - 项目类别:
Accelerated CV Aging in Youth Related to CV Risk Factor Clusters
与心血管危险因素群相关的青少年心血管加速老化
- 批准号:
8420470 - 财政年份:2011
- 资助金额:
$ 6.24万 - 项目类别:
Accelerated CV Aging in Youth Related to CV Risk Factor Clusters
与心血管危险因素群相关的青少年心血管加速老化
- 批准号:
8023440 - 财政年份:2011
- 资助金额:
$ 6.24万 - 项目类别: