Isoperimetric Clusters and Related Extremal Problems with Applications in Probability
等周簇和相关极值问题及其在概率中的应用
基本信息
- 批准号:2204449
- 负责人:
- 金额:$ 6.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The isoperimetric problem in the plane -- which has been known and studied for more than 2 millennia -- asks which shape of a given area has a minimal perimeter (the answer: a circle). The last hundred years have seen significant advances and generalizations in two directions: on one hand, we now how how to study related problems on other spaces including on the sphere, in hyperbolic space, and in Gaussian space. On the other hand, in some situations we can describe what happens when we optimize multiple sets at the same time. In particular, we can describe what happens to soap bubbles when they touch, which also gives insight into the structure of foams. Surprisingly, these geometric problems have a close link to computational complexity: is it widely believed that many important computational problems cannot be solved efficiently. More importantly for applications (because in practice we don't often need exact solutions), it's computationally hard even to approximately solve some of these problems. The field that studies this topic, known as "hardness of approximation," has progressed in leaps and bounds over the last two decades, and one of its seminal achievements was the forging of a deep connection between computational complexity and isoperimetric-type problems in geometry and probability. If we had a better understanding of certain probabilistic, high-dimensional, multi-part isoperimetric problems, it would close several open problems in hardness of approximation. The project will also develop software for numerical computation and support the advising and mentoring of students.This project is about introducing and exploiting new techniques for multi-part isoperimetric problems, with an emphasis on both problems that are natural in geometry (such as the double-bubble conjecture on the sphere) and problems coming from computer science. One of the difficulties with these partitioning problems is the presence of combinatorially many saddle points or local minima, but the investigator's recent resolution (with E. Milman) of the Gaussian double-bubble conjecture included a new method to circumvent this difficulty; the PI will build on this success by extending the method to related settings. This project will allow graduate and undergraduate students to participate in related research projects, it will aid the development of open-source software for numerical computation, and it will support outreach activities for K-12 students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
飞机中的等等问题(已知并研究了2千年以上)询问给定区域的哪个形状的周长最小(答案:一个圆圈)。在过去的百年中,两个方向都取得了重大进步和概括:一方面,我们现在如何在包括球体,双曲线空间和高斯空间在内的其他空间上研究相关问题。另一方面,在某些情况下,我们可以描述当我们同时优化多个集合时会发生什么。特别是,我们可以描述肥皂泡接触时会发生什么,这也可以深入了解泡沫的结构。令人惊讶的是,这些几何问题与计算复杂性有着密切的联系:是否广泛认为无法有效地解决许多重要的计算问题。更重要的是,对于应用程序(实际上我们通常不需要确切的解决方案),即使大约解决了其中一些问题,在计算上也很难。在过去的二十年中,研究该主题的领域(称为“近似硬度”)在突飞猛进中取得了进步,其开创性成就之一是在几何学和概率和概率中的计算复杂性与等速度型问题之间建立了深厚的联系。如果我们对某些概率,高维,多部分的等速度问题有了更好的了解,它将解决近似硬度的几个开放问题。 该项目还将开发用于数值计算的软件,并支持学生的建议和指导。该项目旨在引入和利用新技术,以解决多部分的等速度问题,重点是几何学中的两个问题(例如领域的双重掩盖),以及来自计算机科学的问题。这些分区问题的困难之一是组合上存在许多马鞍点或局部最小值,但是调查员最近对高斯双重气泡的猜想(与E. Milman)的解决方案包括一种新方法来解决这一困难。 PI将通过将方法扩展到相关设置,以此为基础。该项目将允许研究生和本科生参与相关研究项目,它将有助于开发用于数值计算的开源软件,并将支持针对K-12学生的外展活动。该奖项反映了NSF的法定任务,并认为通过使用该基金会的智力和更广泛影响的评估来审查Criteria,并被认为是值得通过评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph Neeman其他文献
Joseph Neeman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joseph Neeman', 18)}}的其他基金
CAREER: Learning, testing, and hardness via extremal geometric problems
职业:通过极值几何问题学习、测试和硬度
- 批准号:
2145800 - 财政年份:2022
- 资助金额:
$ 6.24万 - 项目类别:
Continuing Grant
相似国自然基金
智能无人集群系统在线反馈的安全决策控制一体化设计与分析
- 批准号:62373283
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向反无人机集群的点群多目标无隙跟踪技术
- 批准号:62303109
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于能力认知的无人集群异构感知资源自适应管理方法研究
- 批准号:62372376
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
微电网集群分布式管控系统的多主体交互与多目标协同优化方法研究
- 批准号:62363030
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
异构集群系统层级式动力学建模与最优轨迹协同控制研究
- 批准号:52305118
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Fertilization-induced maturation of cortical ER clusters in oocytes; impact of maternal age
受精诱导卵母细胞皮质 ER 簇的成熟;
- 批准号:
10720185 - 财政年份:2023
- 资助金额:
$ 6.24万 - 项目类别:
Multiple clusters in health-related data: modeling, detection, and evaluation
健康相关数据中的多个集群:建模、检测和评估
- 批准号:
21H03402 - 财政年份:2021
- 资助金额:
$ 6.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Personalizing AAV Management by Leveraging Big Data: Targeting Complication Clusters
利用大数据个性化 AAV 管理:针对并发症集群
- 批准号:
10369732 - 财政年份:2021
- 资助金额:
$ 6.24万 - 项目类别:
Harnessing Big Data to Identify Geographic Clusters of Low-income children with Poor HPV Vaccination Rates
利用大数据识别 HPV 疫苗接种率较低的低收入儿童的地理集群
- 批准号:
10478955 - 财政年份:2021
- 资助金额:
$ 6.24万 - 项目类别:
Personalizing AAV Management by Leveraging Big Data: Targeting Complication Clusters
利用大数据个性化 AAV 管理:针对并发症集群
- 批准号:
10198103 - 财政年份:2021
- 资助金额:
$ 6.24万 - 项目类别: