p-ADIC Methods In The Theory Of Algebraic Cycles
代数圈理论中的 p-ADIC 方法
基本信息
- 批准号:9700896
- 负责人:
- 金额:$ 8.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-09-01 至 2000-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Raskind 9700896 This award supports work on the theory of algebraic cycles on algebraic varieties over p-adically complete fields and over algebraic number fields. The principal investigator will define and study p-adic intermediate Jacobians for algebraic varieties over a p-adically complete field which have a p-adic uniformization. It is expected that these will be fundamental tools in the theory. He will also study higher obstructions to the Hasse principle for varieties over algebraic number fields. The theory of algebraic cycles is part of algebraic geometry, which is the study of solutions to systems of polynomial equations. This is one of the oldest fields in mathematics, but it has experienced an explosion of new ideas and fundamental theorems over the past thirty years. Also, new applications of the theory have been found to coding theory, cryptography and engineering.
这个奖支持在p-根完全域和代数数域上代数变异的代数循环理论方面的工作。主要研究者将定义和研究具有p进均匀化的p进完备域上的代数变量的p进中间雅可比矩阵。预计这些将成为理论的基本工具。他还将研究代数数域上的变量的Hasse原理的更高障碍。代数循环理论是代数几何的一部分,是对多项式方程组解的研究。这是数学中最古老的领域之一,但在过去的三十年里,它经历了新思想和基本定理的爆炸式增长。此外,该理论在编码理论、密码学和工程中也有新的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wayne Raskind其他文献
Wayne Raskind的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wayne Raskind', 18)}}的其他基金
SM-Special Year in Arithmetic Geometry at the CRM Barcelona
SM-巴塞罗那 CRM 算术几何特别年
- 批准号:
0963919 - 财政年份:2010
- 资助金额:
$ 8.19万 - 项目类别:
Standard Grant
Motivic Cohomology and Descent on Algebraic Varieties
代数簇上的动机上同调和下降
- 批准号:
0070850 - 财政年份:2000
- 资助金额:
$ 8.19万 - 项目类别:
Continuing Grant
Mathematical Sciences: Algebraic Cycles on Varieties
数学科学:簇上的代数循环
- 批准号:
9103728 - 财政年份:1991
- 资助金额:
$ 8.19万 - 项目类别:
Continuing Grant
Japan (JSPS) Postdoctoral Program: Algebraic K-Theory, Class Field Theory and Algebraic Cycles
日本(JSPS)博士后项目:代数K理论、类场论和代数圈
- 批准号:
8901585 - 财政年份:1989
- 资助金额:
$ 8.19万 - 项目类别:
Standard Grant
Mathematical Sciences: Algebraic K-Theory, Etale Cohomology and Class Field Theory of Arithmetical Schemes
数学科学:代数 K 理论、Etale 上同调和算术方案的类域论
- 批准号:
8604634 - 财政年份:1986
- 资助金额:
$ 8.19万 - 项目类别:
Continuing Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Combining Machine Learning Explanation Methods with Expectancy-Value Theory to Identify Tailored Interventions for Engineering Student Persistence
将机器学习解释方法与期望值理论相结合,确定针对工程学生坚持的定制干预措施
- 批准号:
2335725 - 财政年份:2024
- 资助金额:
$ 8.19万 - 项目类别:
Standard Grant
MCA: Towards a Theory of Engineering Identity Development & Persistence of Minoritized Students with Imposter Feelings: A Longitudinal Mixed-methods Study of Developmental Networks
MCA:迈向工程身份发展理论
- 批准号:
2421846 - 财政年份:2024
- 资助金额:
$ 8.19万 - 项目类别:
Standard Grant
NewDataMetrics: Econometrics for New Data: Theory, Methods, and Applications
NewDataMetrics:新数据的计量经济学:理论、方法和应用
- 批准号:
EP/Z000335/1 - 财政年份:2024
- 资助金额:
$ 8.19万 - 项目类别:
Research Grant
CAREER: Statistical Inference in Observational Studies -- Theory, Methods, and Beyond
职业:观察研究中的统计推断——理论、方法及其他
- 批准号:
2338760 - 财政年份:2024
- 资助金额:
$ 8.19万 - 项目类别:
Continuing Grant
LEAPS-MPS: Applications of Algebraic and Topological Methods in Graph Theory Throughout the Sciences
LEAPS-MPS:代数和拓扑方法在图论中在整个科学领域的应用
- 批准号:
2313262 - 财政年份:2023
- 资助金额:
$ 8.19万 - 项目类别:
Standard Grant
Non-Perturbative Methods in Field Theory and Many-Body Physics
场论和多体物理中的非微扰方法
- 批准号:
2310283 - 财政年份:2023
- 资助金额:
$ 8.19万 - 项目类别:
Continuing Grant
Collaborative Research: Using Complex Systems Theory and Methods to Gauge the Gains and Persisting Challenges of Broadening Participation Initiatives
合作研究:利用复杂系统理论和方法来衡量扩大参与计划的收益和持续的挑战
- 批准号:
2301197 - 财政年份:2023
- 资助金额:
$ 8.19万 - 项目类别:
Standard Grant
Bayesian Learning for Spatial Point Processes: Theory, Methods, Computation, and Applications
空间点过程的贝叶斯学习:理论、方法、计算和应用
- 批准号:
2412923 - 财政年份:2023
- 资助金额:
$ 8.19万 - 项目类别:
Standard Grant
Development of Theoretical Design Methods of Catalysts Based on Electronic Structure Theory and Their Applications to Design and Development of High-Performance Molecular Catalysts
基于电子结构理论的催化剂理论设计方法发展及其在高性能分子催化剂设计与开发中的应用
- 批准号:
22KJ0003 - 财政年份:2023
- 资助金额:
$ 8.19万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Collaborative Research: Randomized Feature Methods for Modeling and Dynamics: Theory and Algorithms
协作研究:建模和动力学的随机特征方法:理论和算法
- 批准号:
2331033 - 财政年份:2023
- 资助金额:
$ 8.19万 - 项目类别:
Standard Grant














{{item.name}}会员




