Analytical Approaches to Singular Perturbation Problems of Significance in Applications
具有应用意义的奇异摄动问题的分析方法
基本信息
- 批准号:9703382
- 负责人:
- 金额:$ 3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-08-01 至 1999-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9703382 O'Malley The University of Washington proposes that the research project Analytical Approaches to Singular Perturbation Problems of Significance in Applications be continued, with Professor Robert E. O'Malley, Jr. as the Principal Investigator. The research develops asymptotic methods to solve nonlinear boundary value problems for both ordinary and partial differential equations when solutions feature narrow boundary, shock, or transition layer regions of rapid change. The research will emphasize stiff computation and dynamic metastability, through a consistently hybrid asymptotic/numeric investigation. Special notice will be paid to asymptotically exponentially small terms, which have previously received scant attention, since we are now well aware that asymptotics beyond all orders can be of critical physical significance. Throughout science and engineering, problems often occur which involve singularly perturbed boundary value problems. The best known example is fluid dynamical boundary layers. Analytical and numerical techniques must be combined to effectively attack these important problems. This work rests on a hybrid approach to solving both ordinary and partial differential equations for model problems motivated by application needs.
9703382 奥马利 华盛顿大学提议继续进行研究项目“奇异摄动问题的分析方法及其应用”。小奥马利作为首席研究员。 研究开发渐近方法来解决常微分方程和偏微分方程的非线性边值问题时,解决方案功能窄边界,冲击,或过渡层区域的快速变化。 研究将强调刚性计算和动态亚稳定性,通过一贯的混合渐近/数值调查。 特别注意将支付渐近指数小的条款,这以前很少受到关注,因为我们现在很清楚,超越所有订单的渐近可能是至关重要的物理意义。 在整个科学和工程中,经常会出现涉及奇摄动边值问题。 最著名的例子是流体动力学边界层。 分析和数值技术必须结合起来,有效地攻击这些重要的问题。 这项工作依赖于一个混合的方法来解决模型问题的应用需求的动机,常微分方程和偏微分方程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert O'Malley其他文献
A-10 Do rotorcraft programs transport critically ill patients?
- DOI:
10.1016/s0894-8321(88)80077-9 - 发表时间:
1988-09-01 - 期刊:
- 影响因子:
- 作者:
Kenneth Rhee;William Baxt;James Mackenzie;Richard Burney;Robert O'Malley;Daniel Schwabe;Daniel Storer;Rita Weber;Neil Willits - 通讯作者:
Neil Willits
A-11 Cricothyroidotomy by flight paramedics
- DOI:
10.1016/s0894-8321(88)80078-0 - 发表时间:
1988-09-01 - 期刊:
- 影响因子:
- 作者:
Kenneth Rhee;William Baxt;James Mackenzie;Richard Burney;Robert O'Malley;Daniel Schwabe;Daniel Storer;Rita Weber;Neil Willits - 通讯作者:
Neil Willits
Robert O'Malley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert O'Malley', 18)}}的其他基金
Analytical Approaches to Singular Perturbation Problems of Significance in Applications
具有应用意义的奇异摄动问题的分析方法
- 批准号:
0103632 - 财政年份:2001
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Mathematical Sciences: Analytical Approaches to Singular Perturbation Problems of Significance in Applications
数学科学:具有应用意义的奇异摄动问题的分析方法
- 批准号:
9404536 - 财政年份:1994
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
Mathematical Sciences: Analytical Approaches to Singular Perturbation Problems of Significance to Applications
数学科学:具有应用意义的奇异摄动问题的分析方法
- 批准号:
9296098 - 财政年份:1992
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
Mathematical Sciences: Analytical Approaches to Singular Perturbation Problems of Significance in Application
数学科学:具有应用意义的奇异摄动问题的分析方法
- 批准号:
9107196 - 财政年份:1991
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
Mathematical Sciences: Analytical Approaches to Singular Perturbation Problems of Significance to Applications
数学科学:具有应用意义的奇异摄动问题的分析方法
- 批准号:
8908013 - 财政年份:1989
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
Mathematical Sciences: Analytical and Numerical Approaches to Singular Perturbation Problems of Significance in Applications
数学科学:具有应用意义的奇异摄动问题的分析和数值方法
- 批准号:
8805626 - 财政年份:1988
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Mathematical Sciences: Analytical and Numerical Approaches to Singular Perturbation Problems of Significance in Applications
数学科学:具有应用意义的奇异摄动问题的分析和数值方法
- 批准号:
8504034 - 财政年份:1985
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
Mathematical Sciences: Analytical and Numerical Approaches to Singular Perturbation Problems of Significance in Applications
数学科学:具有应用意义的奇异摄动问题的分析和数值方法
- 批准号:
8301665 - 财政年份:1983
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
相似国自然基金
Lagrangian origin of geometric approaches to scattering amplitudes
- 批准号:24ZR1450600
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Revisiting Wallach's Rule: Approaches toward singular point interplaying molecular symmetries and electronic properties
重温瓦拉赫法则:研究奇点相互作用的分子对称性和电子特性的方法
- 批准号:
22H00314 - 财政年份:2022
- 资助金额:
$ 3万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Experimental approaches to reveal formation process of cosmic dust taken into account singular properties in mesoscale
考虑中尺度奇异特性揭示宇宙尘埃形成过程的实验方法
- 批准号:
24684033 - 财政年份:2012
- 资助金额:
$ 3万 - 项目类别:
Grant-in-Aid for Young Scientists (A)
Analytical Approaches to Singular Perturbation Problems of Significance in Applications
具有应用意义的奇异摄动问题的分析方法
- 批准号:
0103632 - 财政年份:2001
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Mathematical Sciences: Analytical Approaches to Singular Perturbation Problems of Significance in Applications
数学科学:具有应用意义的奇异摄动问题的分析方法
- 批准号:
9404536 - 财政年份:1994
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
Mathematical Sciences: Analytical Approaches to Singular Perturbation Problems of Significance to Applications
数学科学:具有应用意义的奇异摄动问题的分析方法
- 批准号:
9296098 - 财政年份:1992
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
Mathematical Sciences: Analytical Approaches to Singular Perturbation Problems of Significance in Application
数学科学:具有应用意义的奇异摄动问题的分析方法
- 批准号:
9107196 - 财政年份:1991
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
Mathematical Sciences: Analytical Approaches to Singular Perturbation Problems of Significance to Applications
数学科学:具有应用意义的奇异摄动问题的分析方法
- 批准号:
8908013 - 财政年份:1989
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
Mathematical Sciences: Analytical and Numerical Approaches to Singular Perturbation Problems of Significance in Applications
数学科学:具有应用意义的奇异摄动问题的分析和数值方法
- 批准号:
8805626 - 财政年份:1988
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Mathematical Sciences: Analytical and Numerical Approaches to Singular Perturbation Problems of Significance in Applications
数学科学:具有应用意义的奇异摄动问题的分析和数值方法
- 批准号:
8504034 - 财政年份:1985
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
Mathematical Sciences: Analytical and Numerical Approaches to Singular Perturbation Problems of Significance in Applications
数学科学:具有应用意义的奇异摄动问题的分析和数值方法
- 批准号:
8301665 - 财政年份:1983
- 资助金额:
$ 3万 - 项目类别:
Standard Grant