Analytical Approaches to Singular Perturbation Problems of Significance in Applications
具有应用意义的奇异摄动问题的分析方法
基本信息
- 批准号:0103632
- 负责人:
- 金额:$ 10.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-08-15 至 2005-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NSF Award Abstract - DMS-0103632Mathematical Sciences: Analytical Approaches to Singular Perturbation Problems of Significance in Applications0103632O'MalleyThe research will develop asymptotic methods to solve nonlinear singularly perturbed boundary value problems for both ordinary and partial differential equations. A special emphasis will be the systematic development of renormalization methods, which theoretical physicists have proposed as a unified tool for asymptotic analysis. Another will be continued investigation of metastable dynamics for algebraic, as well as exponential, asymptotics. The problems are related since they both deal with long-time asymptotics and the classical method of multiple scales.Asymptotic methods, like computation, provide an important way to find approximate solutions to nonlinear problems arising in significant applications. This work seeks to further develop such analytical techniques and to apply them in engineering and the sciences.
NSF奖摘要- DMS-0103632数学科学:奇异摄动问题的分析方法在应用中的意义0103632奥马利研究将发展渐近方法来解决非线性奇异摄动边值问题的普通和偏微分方程。 一个特别的重点将是重整化方法的系统发展,理论物理学家提出作为一个统一的工具渐近分析。 另一个将继续调查亚稳态动力学的代数,以及指数,渐近。这些问题是相关的,因为它们都涉及长时间渐近性和经典的多尺度方法。渐近方法,如计算,提供了一个重要的途径来找到近似解的非线性问题中出现的重要应用。 这项工作旨在进一步发展这种分析技术,并将其应用于工程和科学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert O'Malley其他文献
A-10 Do rotorcraft programs transport critically ill patients?
- DOI:
10.1016/s0894-8321(88)80077-9 - 发表时间:
1988-09-01 - 期刊:
- 影响因子:
- 作者:
Kenneth Rhee;William Baxt;James Mackenzie;Richard Burney;Robert O'Malley;Daniel Schwabe;Daniel Storer;Rita Weber;Neil Willits - 通讯作者:
Neil Willits
A-11 Cricothyroidotomy by flight paramedics
- DOI:
10.1016/s0894-8321(88)80078-0 - 发表时间:
1988-09-01 - 期刊:
- 影响因子:
- 作者:
Kenneth Rhee;William Baxt;James Mackenzie;Richard Burney;Robert O'Malley;Daniel Schwabe;Daniel Storer;Rita Weber;Neil Willits - 通讯作者:
Neil Willits
Robert O'Malley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert O'Malley', 18)}}的其他基金
Analytical Approaches to Singular Perturbation Problems of Significance in Applications
具有应用意义的奇异摄动问题的分析方法
- 批准号:
9703382 - 财政年份:1997
- 资助金额:
$ 10.2万 - 项目类别:
Standard Grant
Mathematical Sciences: Analytical Approaches to Singular Perturbation Problems of Significance in Applications
数学科学:具有应用意义的奇异摄动问题的分析方法
- 批准号:
9404536 - 财政年份:1994
- 资助金额:
$ 10.2万 - 项目类别:
Continuing Grant
Mathematical Sciences: Analytical Approaches to Singular Perturbation Problems of Significance to Applications
数学科学:具有应用意义的奇异摄动问题的分析方法
- 批准号:
9296098 - 财政年份:1992
- 资助金额:
$ 10.2万 - 项目类别:
Continuing Grant
Mathematical Sciences: Analytical Approaches to Singular Perturbation Problems of Significance in Application
数学科学:具有应用意义的奇异摄动问题的分析方法
- 批准号:
9107196 - 财政年份:1991
- 资助金额:
$ 10.2万 - 项目类别:
Continuing Grant
Mathematical Sciences: Analytical Approaches to Singular Perturbation Problems of Significance to Applications
数学科学:具有应用意义的奇异摄动问题的分析方法
- 批准号:
8908013 - 财政年份:1989
- 资助金额:
$ 10.2万 - 项目类别:
Continuing Grant
Mathematical Sciences: Analytical and Numerical Approaches to Singular Perturbation Problems of Significance in Applications
数学科学:具有应用意义的奇异摄动问题的分析和数值方法
- 批准号:
8805626 - 财政年份:1988
- 资助金额:
$ 10.2万 - 项目类别:
Standard Grant
Mathematical Sciences: Analytical and Numerical Approaches to Singular Perturbation Problems of Significance in Applications
数学科学:具有应用意义的奇异摄动问题的分析和数值方法
- 批准号:
8504034 - 财政年份:1985
- 资助金额:
$ 10.2万 - 项目类别:
Continuing Grant
Mathematical Sciences: Analytical and Numerical Approaches to Singular Perturbation Problems of Significance in Applications
数学科学:具有应用意义的奇异摄动问题的分析和数值方法
- 批准号:
8301665 - 财政年份:1983
- 资助金额:
$ 10.2万 - 项目类别:
Standard Grant
Mathematical Sciences Research Equipment
数学科学研究设备
- 批准号:
8304462 - 财政年份:1983
- 资助金额:
$ 10.2万 - 项目类别:
Standard Grant
相似国自然基金
Lagrangian origin of geometric approaches to scattering amplitudes
- 批准号:24ZR1450600
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Revisiting Wallach's Rule: Approaches toward singular point interplaying molecular symmetries and electronic properties
重温瓦拉赫法则:研究奇点相互作用的分子对称性和电子特性的方法
- 批准号:
22H00314 - 财政年份:2022
- 资助金额:
$ 10.2万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Experimental approaches to reveal formation process of cosmic dust taken into account singular properties in mesoscale
考虑中尺度奇异特性揭示宇宙尘埃形成过程的实验方法
- 批准号:
24684033 - 财政年份:2012
- 资助金额:
$ 10.2万 - 项目类别:
Grant-in-Aid for Young Scientists (A)
Analytical Approaches to Singular Perturbation Problems of Significance in Applications
具有应用意义的奇异摄动问题的分析方法
- 批准号:
9703382 - 财政年份:1997
- 资助金额:
$ 10.2万 - 项目类别:
Standard Grant
Mathematical Sciences: Analytical Approaches to Singular Perturbation Problems of Significance in Applications
数学科学:具有应用意义的奇异摄动问题的分析方法
- 批准号:
9404536 - 财政年份:1994
- 资助金额:
$ 10.2万 - 项目类别:
Continuing Grant
Mathematical Sciences: Analytical Approaches to Singular Perturbation Problems of Significance to Applications
数学科学:具有应用意义的奇异摄动问题的分析方法
- 批准号:
9296098 - 财政年份:1992
- 资助金额:
$ 10.2万 - 项目类别:
Continuing Grant
Mathematical Sciences: Analytical Approaches to Singular Perturbation Problems of Significance in Application
数学科学:具有应用意义的奇异摄动问题的分析方法
- 批准号:
9107196 - 财政年份:1991
- 资助金额:
$ 10.2万 - 项目类别:
Continuing Grant
Mathematical Sciences: Analytical Approaches to Singular Perturbation Problems of Significance to Applications
数学科学:具有应用意义的奇异摄动问题的分析方法
- 批准号:
8908013 - 财政年份:1989
- 资助金额:
$ 10.2万 - 项目类别:
Continuing Grant
Mathematical Sciences: Analytical and Numerical Approaches to Singular Perturbation Problems of Significance in Applications
数学科学:具有应用意义的奇异摄动问题的分析和数值方法
- 批准号:
8805626 - 财政年份:1988
- 资助金额:
$ 10.2万 - 项目类别:
Standard Grant
Mathematical Sciences: Analytical and Numerical Approaches to Singular Perturbation Problems of Significance in Applications
数学科学:具有应用意义的奇异摄动问题的分析和数值方法
- 批准号:
8504034 - 财政年份:1985
- 资助金额:
$ 10.2万 - 项目类别:
Continuing Grant
Mathematical Sciences: Analytical and Numerical Approaches to Singular Perturbation Problems of Significance in Applications
数学科学:具有应用意义的奇异摄动问题的分析和数值方法
- 批准号:
8301665 - 财政年份:1983
- 资助金额:
$ 10.2万 - 项目类别:
Standard Grant