Stochastic Processes with Applications to Ecology and Theoretical Population Genetics

随机过程在生态学和理论群体遗传学中的应用

基本信息

  • 批准号:
    9703694
  • 负责人:
  • 金额:
    $ 8.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-06-15 至 2001-05-31
  • 项目状态:
    已结题

项目摘要

9703694 Neuhauser The projects are divided into two primary research areas, the theoretical investigation of ecological models in the context of interacting particle systems, and genealogical processes in theoretical population genetics. Interacting particle systems are continuous time Markov processes on the integer lattice in which each site is in one of several states. Local rules determine the dynamics of the systems. They provide an ideal framework to investigate the role of the spatial structure in models in ecology. In joint work with Dr. Stephen Pacala (Princeton University) the principal investigator will consider the consequences of spatial structure in classical models in ecology, such as the Lotka-Volterra model of interspecific competition. The nonspatial version is very well understood. Including a spatial component will likely yield new phenomena. In joint work with Dr. Stephen Krone (University of Idaho) the principal investigator will study the spread of a population in a heterogeneous environment by using the two-dimensional contact process in a random environment. In theoretical population genetics, Dr. Neuhauser plans to study genealogies under various selection schemes, for instance, frequency-dependent selection and overdominant selection. It is planned to rigorously derive genealogies and to use them to investigate sample properties in both spatial and nonspatial settings. The causes and effects of spatial structure have long been central topics in population and community ecology. In joint work with Dr. Stephen Pacala (Princeton University) the principal investigator will study the effects of competition on the spatial structure of communities. Local interactions and competition in spatial communities can cause clumping of individuals of the same species which can lead to a reduction in biodiversity. In joint work with Dr. Stephen Krone (University of Idaho) the principal investigator will consider the spread of populations in heterogeneous environments and how habi tat destruction and subsequent restoration affects the ability of populations to recover. Genealogies are an important tool in population genetics to investigate properties of samples of genes. Dr. Neuhauser plans to investigate frequency-dependent and overdominant selection. Both modes of selection are known to be able to maintain a high degree of genetic diversity. Little is known about genealogies under such selection schemes which are important, for instance, in plant breeding systems or in the major histocompatibility complex.
9703694 Neuhauser该项目分为两个主要研究领域,即相互作用粒子系统背景下的生态模型的理论调查,以及理论种群遗传学中的系谱过程。相互作用的粒子系统是整数格上的连续时间马尔可夫过程,其中每个位置都处于几种状态之一。当地规则决定了系统的动态。它们为研究空间结构在生态学模型中的作用提供了一个理想的框架。在与史蒂芬·帕卡拉博士(普林斯顿大学)的合作中,首席研究员将考虑生态学经典模型中空间结构的后果,例如Lotka-Volterra种间竞争模型。非空间版本是非常好理解的。包括空间成分可能会产生新的现象。在与Stephen Krone博士(爱达荷大学)的联合工作中,首席研究员将利用随机环境中的二维接触过程来研究人口在异质环境中的传播。在理论种群遗传学方面,纽豪瑟博士计划研究各种选择方案下的谱系,例如频率相关选择和超显性选择。它计划严格地派生家谱,并使用它们来研究空间和非空间环境中的样本属性。空间结构的成因和影响一直是种群和群落生态学的中心话题。首席调查员将与史蒂芬·帕卡拉博士(普林斯顿大学)合作,研究竞争对社区空间结构的影响。空间群落中的地方相互作用和竞争可能导致同一物种的个体聚集,从而可能导致生物多样性的减少。在与Stephen Krone博士(爱达荷大学)的联合工作中,首席调查员将考虑种群在不同环境中的扩散,以及人类灭绝和随后的修复如何影响种群恢复的能力。系谱是群体遗传学中研究基因样本性质的重要工具。Neuhauser博士计划研究频率相关和过度显性的选择。众所周知,这两种选择模式都能够保持高度的遗传多样性。例如,在植物育种系统或主要组织亲和性复合体中,这种选择方案下的家谱很重要,人们对此知之甚少。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Claudia Neuhauser其他文献

An ergodic theorem for Schlögl models with small migration
The effects of group keyboard music making on the mood states of college students
集体键盘音乐制作对大学生情绪状态的影响
  • DOI:
    10.1177/03057356211032716
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Todd Van Kekerix;W. Elder;Courtney Crappell;Claudia Neuhauser;O. Nesic‐Taylor
  • 通讯作者:
    O. Nesic‐Taylor

Claudia Neuhauser的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Claudia Neuhauser', 18)}}的其他基金

EAGER Germination: From 0 to 2
渴望发芽:从 0 到 2
  • 批准号:
    1628237
  • 财政年份:
    2016
  • 资助金额:
    $ 8.88万
  • 项目类别:
    Standard Grant
Gordon Conference on Theoretical Biology and Biomathematics
戈登理论生物学和生物数学会议
  • 批准号:
    0208814
  • 财政年份:
    2002
  • 资助金额:
    $ 8.88万
  • 项目类别:
    Standard Grant
BIOCOMPLEXITY-Evolution and Ecology of Perturbed Interactions: Modeling Disequilibria in Time and Space
生物复杂性-扰动相互作用的进化和生态学:模拟时间和空间的不平衡
  • 批准号:
    0083468
  • 财政年份:
    2000
  • 资助金额:
    $ 8.88万
  • 项目类别:
    Standard Grant
Stochastic Processes in Ecology and Population Genetics
生态学和群体遗传学中的随机过程
  • 批准号:
    0072262
  • 财政年份:
    2000
  • 资助金额:
    $ 8.88万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Interacting Particle Systems with Applications to Population Biology
数学科学:粒子系统的相互作用及其在群体生物学中的应用
  • 批准号:
    9403644
  • 财政年份:
    1994
  • 资助金额:
    $ 8.88万
  • 项目类别:
    Continuing Grant

相似国自然基金

Submesoscale Processes Associated with Oceanic Eddies
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    160 万元
  • 项目类别:

相似海外基金

Applications of stochastic analysis to statistical inference for stationary and non-stationary Gaussian processes
随机分析在平稳和非平稳高斯过程统计推断中的应用
  • 批准号:
    2311306
  • 财政年份:
    2023
  • 资助金额:
    $ 8.88万
  • 项目类别:
    Standard Grant
Inference for Stochastic Processes and Applications
随机过程的推理和应用
  • 批准号:
    RGPIN-2020-05358
  • 财政年份:
    2022
  • 资助金额:
    $ 8.88万
  • 项目类别:
    Discovery Grants Program - Individual
Stochastic Processes and Applications
随机过程及其应用
  • 批准号:
    RGPIN-2018-05114
  • 财政年份:
    2022
  • 资助金额:
    $ 8.88万
  • 项目类别:
    Discovery Grants Program - Individual
Inference for Stochastic Processes and Applications
随机过程的推理和应用
  • 批准号:
    RGPIN-2020-05358
  • 财政年份:
    2021
  • 资助金额:
    $ 8.88万
  • 项目类别:
    Discovery Grants Program - Individual
Finite Markov Chain Imbedding and Its Applications in Stochastic Processes, biological Sequences, and Discrete Mathematics
有限马尔可夫链嵌入及其在随机过程、生物序列和离散数学中的应用
  • 批准号:
    RGPIN-2015-06698
  • 财政年份:
    2021
  • 资助金额:
    $ 8.88万
  • 项目类别:
    Discovery Grants Program - Individual
Fractional Distributions and Stochastic Processes with Applications
分数分布和随机过程及其应用
  • 批准号:
    2669911
  • 财政年份:
    2021
  • 资助金额:
    $ 8.88万
  • 项目类别:
    Studentship
Stochastic Processes and Applications
随机过程及其应用
  • 批准号:
    RGPIN-2018-05114
  • 财政年份:
    2021
  • 资助金额:
    $ 8.88万
  • 项目类别:
    Discovery Grants Program - Individual
Inference for Stochastic Processes and Applications
随机过程的推理和应用
  • 批准号:
    RGPIN-2020-05358
  • 财政年份:
    2020
  • 资助金额:
    $ 8.88万
  • 项目类别:
    Discovery Grants Program - Individual
Stochastic analysis for weighted Markov processes and their applications
加权马尔可夫过程的随机分析及其应用
  • 批准号:
    20K03635
  • 财政年份:
    2020
  • 资助金额:
    $ 8.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Finite Markov Chain Imbedding and Its Applications in Stochastic Processes, biological Sequences, and Discrete Mathematics
有限马尔可夫链嵌入及其在随机过程、生物序列和离散数学中的应用
  • 批准号:
    RGPIN-2015-06698
  • 财政年份:
    2020
  • 资助金额:
    $ 8.88万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了