Near-Maximum-Likelihood Decoding Techniques with Reduced Complexity

降低复杂度的近最大似然解码技术

基本信息

  • 批准号:
    9703844
  • 负责人:
  • 金额:
    $ 32.23万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-09-15 至 2001-08-31
  • 项目状态:
    已结题

项目摘要

New coding applications are often limited by the huge decoding complexity required by the best possible maximum-likelihood (ML) decoding. Recently designed sub-optimal algorithms reduce the complexity exponent of ML decoding two times along with an arbitrarily small increase in decoding error probability. The project addresses the problem of designing more advanced algorithms that can further reduce the complexity exponent of ML decoding five to seven times. We are going to investigate the following topics. General study of sub-optimal algorithms. The goals are: (a) to obtain the explicit trade-offs between complexity and performance of near-ML decoding, (b) to generalize near-ML decoding for practically important channels, (c) to combine new near-ML decoding techniques with conventional trellis decoding. Design of new algorithms for near-ML decoding. The goals are: (a) to develop new presorting procedures which reduce the complexity exponent of ML decoding up to three times, (b) to design new random-search algorithms which reduce the latter exponent up to five times. Design of cascaded NML decoding algorithms. The goals are: (a) to develop cascaded near-ML decoding for concatenated codes, and to reduce the complexity exponent of ML decoding up to seven times, (b) to apply cascaded design for bursty and fading channels. Real-time software implementation of designed algorithms. The goal is to develop fast software algorithms for codes of lengths 50 to 100 used over the channels with a signal-to-noise ratio of about 1 dB.
新的编码应用通常受到最佳最大似然 (ML) 解码所需的巨大解码复杂性的限制。最近设计的次优算法将 ML 解码的复杂度指数降低了两倍,同时解码错误概率也略有增加。该项目解决了设计更先进算法的问题,这些算法可以进一步将 ML 解码的复杂性指数降低五到七倍。 我们将研究以下主题。 次优算法的一般研究。目标是:(a) 获得近 ML 解码的复杂性和性能之间的明确权衡,(b) 将近 ML 解码推广到实际重要的通道,(c) 将新的近 ML 解码技术与传统的网格解码相结合。 近机器学习解码的新算法设计。目标是:(a) 开发新的预排序程序,将 ML 解码的复杂性指数降低最多三倍,(b) 设计新的随机搜索算法,将后者指数降低最多五倍。 级联NML解码算法的设计。目标是:(a) 为级联代码开发级联近 ML 解码,并将 ML 解码的复杂性指数降低七倍,(b) 针对突发和衰落信道应用级联设计。 设计算法的实时软件实现。目标是开发用于通道上使用的长度为 50 至 100 的代码的快速软件算法,信噪比约为 1 dB。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ilya Dumer其他文献

Covering an ellipsoid with equal balls
  • DOI:
    10.1016/j.jcta.2006.03.021
  • 发表时间:
    2006-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ilya Dumer
  • 通讯作者:
    Ilya Dumer

Ilya Dumer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ilya Dumer', 18)}}的其他基金

GOALI: Three-dimensional Magnetic Recording At Areal Densities Above 1 Terabit-per-square-inch
目标:面密度超过每平方英寸 1 太比特的三维磁记录
  • 批准号:
    1102074
  • 财政年份:
    2011
  • 资助金额:
    $ 32.23万
  • 项目类别:
    Continuing Grant
Collaborative Research: Digital Fingerprinting: Information Theoretic Analysis and Coding Design
合作研究:数字指纹:信息理论分析和编码设计
  • 批准号:
    0635339
  • 财政年份:
    2006
  • 资助金额:
    $ 32.23万
  • 项目类别:
    Standard Grant
Recursive Decoding for Reed-Muller Codes and their Modifications
Reed-Muller 码的递归译码及其修改
  • 批准号:
    0097125
  • 财政年份:
    2001
  • 资助金额:
    $ 32.23万
  • 项目类别:
    Continuing Grant

相似海外基金

Laparoscopic surgical dynamic navigation using maximum likelihood estimation of organ deformations
使用器官变形最大似然估计的腹腔镜手术动态导航
  • 批准号:
    23H00480
  • 财政年份:
    2023
  • 资助金额:
    $ 32.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
CIF: Small: Low Complexity Maximum-Likelihood Decoding Through Serial List Decoding
CIF:小:通过串行列表解码进行低复杂度最大似然解码
  • 批准号:
    2008918
  • 财政年份:
    2020
  • 资助金额:
    $ 32.23万
  • 项目类别:
    Standard Grant
Efficient maximum likelihood phylogeny estimation of Mycobacterium tuberculosis based on tandem repeat data
基于串联重复数据的结核分枝杆菌的有效最大似然系统发育估计
  • 批准号:
    553295-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 32.23万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
The Multi-Mission Maximum Likelihood Framework (3ML): a Tool to Explore the High-Energy Universe in the Era of Multi Messenger Astrophysics
多任务最大似然框架(3ML):多信使天体物理时代探索高能宇宙的工具
  • 批准号:
    2011759
  • 财政年份:
    2020
  • 资助金额:
    $ 32.23万
  • 项目类别:
    Continuing Grant
Targeted Maximum Likelihood Estimation Method and Administrative Data
目标最大似然估计方法和管理数据
  • 批准号:
    510563-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 32.23万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Developing the maximum likelihood estimation for component analysis: A state space approach
开发成分分析的最大似然估计:状态空间方法
  • 批准号:
    RGPIN-2016-04779
  • 财政年份:
    2017
  • 资助金额:
    $ 32.23万
  • 项目类别:
    Discovery Grants Program - Individual
Maximum smoothed likelihood estimation in linear regression model
线性回归模型中的最大平滑似然估计
  • 批准号:
    509014-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 32.23万
  • 项目类别:
    University Undergraduate Student Research Awards
Inferring maximum likelihood phylogenies from MIRU-VNTR data
从 MIRU-VNTR 数据推断最大似然系统发育
  • 批准号:
    511877-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 32.23万
  • 项目类别:
    University Undergraduate Student Research Awards
Targeted Maximum Likelihood Estimation Method and Administrative Data
目标最大似然估计方法和管理数据
  • 批准号:
    373042
  • 财政年份:
    2016
  • 资助金额:
    $ 32.23万
  • 项目类别:
    Studentship Programs
Throughput Performance of Non-Orthogonal Multiple Access with Joint Maximum Likelihood Detection in Heterogeneous Network
异构网络联合最大似然检测非正交多址吞吐量性能
  • 批准号:
    16K06366
  • 财政年份:
    2016
  • 资助金额:
    $ 32.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了