New Approaches to Nonparametric Regression Estimation for Continuous and Discrete Time Series
连续和离散时间序列非参数回归估计的新方法
基本信息
- 批准号:9703876
- 负责人:
- 金额:$ 16.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-07-01 至 2001-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Masry 9703876 The research is concerned with regression functions estimation in a hybrid setting: the underlying processes are continuous in time, and so is the regression function, but the observations are taken at discrete-times. This is common in many practical situations where the collected data is irregularly spaced as in environmental and oceanographic studies. The instants at which the data is obtained constitute a point process with a FINITE mean sampling rate but nevertheless result in no loss of information. The goal of the research is to identify appropriate non-equally spaced sampling schemes; formulate suitable estimates based on a modified Nadaraya-Watson approach and on the more recent local polynomial fitting approach; and study their convergence properties including asymptotic normality and rates of strong convergence. A fundamental requirement is that the consistency of the regression estimates, as the number of observations tends to infinity, holds for ALL positive values of the mean sampling rate. Results of this type do not hold for conventional equally-spaced data unless the sampling rate is allowed to diverge to infinity. Scientists and engineers collect huge amounts of data in wide range of disciplines including communication systems (e.g., Internet traffic, satellites), econometrics (e.g. stock market), geology (e.g. earthquakes), and environmental science (e.g. pollution levels). While much of the observed data is continuous in time, the processing of the data is carried out by using computers which convert the data to a digital form. The research develops digital processing methodologies (irregular sampling methodologies) which do not lose any information during the conversion process from continuous-time data to discrete-time data. The context of the research is 1) to forecast the future evolution of the phenomena being observed and 2) to filter signals observed in the presence of corrupting noise.
Masry 9703876 该研究关注的是回归函数估计在一个混合设置:基本过程是连续的时间,所以是回归函数,但观察是在离散时间。 这在许多实际情况下是常见的,如在环境和海洋学研究中收集的数据是不规则间隔的。 获得数据的时刻构成具有有限平均采样率的点过程,但不会导致信息丢失。 研究的目标是确定适当的非等间距抽样方案,制定适当的估计修改后的Nadaraya-Watson方法和最近的局部多项式拟合方法的基础上,并研究其收敛特性,包括渐近正态性和强收敛率。一个基本要求是回归估计的一致性,因为观测值的数量趋于无穷大,对平均采样率的所有正值都成立。这种类型的结果不适用于传统的等距数据,除非采样率允许发散到无穷大。 科学家和工程师收集大量的数据,在广泛的学科,包括 通信系统(例如,互联网流量、卫星)、计量经济学(如股票市场)、地质学(如地震)和环境科学(如污染水平)。虽然许多观测数据在时间上是连续的,但数据的处理是通过使用计算机将数据转换为数字形式来进行的。该研究开发了数字处理方法(不规则采样方法),这些方法在从连续时间数据到离散时间数据的转换过程中不会丢失任何信息。研究的背景是:1)预测所观察到的现象的未来演变; 2)过滤在存在破坏性噪声的情况下观察到的信号。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elias Masry其他文献
Linear/nonlinear forms and the normal law: Characterization by high order correlations
- DOI:
10.1007/bf02491479 - 发表时间:
1987-12-01 - 期刊:
- 影响因子:0.600
- 作者:
Elias Masry;Bernard Picinbono - 通讯作者:
Bernard Picinbono
Elias Masry的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Lagrangian origin of geometric approaches to scattering amplitudes
- 批准号:24ZR1450600
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Investigating bioengineering approaches to produce immuno-modulatory mesenchymal stromal cells and their extracellular vesicle
研究生产免疫调节间充质基质细胞及其细胞外囊泡的生物工程方法
- 批准号:
2608627 - 财政年份:2025
- 资助金额:
$ 16.2万 - 项目类别:
Studentship
New approaches to training deep probabilistic models
训练深度概率模型的新方法
- 批准号:
2613115 - 财政年份:2025
- 资助金额:
$ 16.2万 - 项目类别:
Studentship
PINK - Provision of Integrated Computational Approaches for Addressing New Markets Goals for the Introduction of Safe-and-Sustainable-by-Design Chemicals and Materials
PINK - 提供综合计算方法来解决引入安全和可持续设计化学品和材料的新市场目标
- 批准号:
10097944 - 财政年份:2024
- 资助金额:
$ 16.2万 - 项目类别:
EU-Funded
NEM-EMERGE: An integrated set of novel approaches to counter the emergence and proliferation of invasive and virulent soil-borne nematodes
NEM-EMERGE:一套综合的新方法来对抗入侵性和剧毒土传线虫的出现和扩散
- 批准号:
10080598 - 财政年份:2024
- 资助金额:
$ 16.2万 - 项目类别:
EU-Funded
Multiscale Approaches And Scalability Within Climate Change-heritage Risk Assessments
气候变化遗产风险评估中的多尺度方法和可扩展性
- 批准号:
AH/Z000084/1 - 财政年份:2024
- 资助金额:
$ 16.2万 - 项目类别:
Research Grant
Dynamical Approaches to Number Theory and Additive Combinatorics
数论和加法组合学的动态方法
- 批准号:
EP/Y014030/1 - 财政年份:2024
- 资助金额:
$ 16.2万 - 项目类别:
Research Grant
C-NEWTRAL: smart CompreheNsive training to mainstrEam neW approaches for climaTe-neutRal cities through citizen engAgement and decision-making support
C-NEWTRAL:智能综合培训,通过公民参与和决策支持将气候中和城市的新方法纳入主流
- 批准号:
EP/Y032640/1 - 财政年份:2024
- 资助金额:
$ 16.2万 - 项目类别:
Research Grant
Stuck in the mud: addressing the fine sediment conundrum with multiscale and interdisciplinary approaches to support global freshwater biodiversity
陷入困境:采用多尺度和跨学科方法解决细小沉积物难题,支持全球淡水生物多样性
- 批准号:
MR/Y020200/1 - 财政年份:2024
- 资助金额:
$ 16.2万 - 项目类别:
Fellowship
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
- 批准号:
2326020 - 财政年份:2024
- 资助金额:
$ 16.2万 - 项目类别:
Continuing Grant
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
- 批准号:
2326021 - 财政年份:2024
- 资助金额:
$ 16.2万 - 项目类别:
Standard Grant