Convergence and Collapsing of Kahler Manifolds and Mathematical Theory of Mirror Symmetry
卡勒流形的收敛与塌缩与镜像对称的数学理论
基本信息
- 批准号:9703870
- 负责人:
- 金额:$ 7.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-07-01 至 2001-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9703870 Ruan This project lies in the area of Kahler geometry and its application to mirror symmetry. More specifically, the investigator is to use the idea of Kahler or Riemannian collapsing - a sequence of Kahler manifolds and their limit manifold are considered - to further our understanding of mirror symmetry. Riemannian manifolds are curved spaces equipped with a notion of distance, also called a metric. The totality of (compact) Riemannian manifolds itself can be given a metric so that when given an infinite collection of such manifolds it makes sense to talk about clustering or converging. Mirror symmetry is a phenomenon first discovered by physicists: in the popular 10-dimensional string theory model of the universe, the invisible 6-dimensions arise as so called Calabi-Yau manifolds possessing certain symmetry.
9703870阮这个项目属于Kahler几何及其在镜像对称中的应用。更具体地说,研究者将使用Kahler或riemanian坍缩的概念——考虑Kahler流形序列及其极限流形——来进一步理解镜像对称。黎曼流形是具有距离概念的弯曲空间,也称为度规。(紧)黎曼流形的总体本身可以给定一个度规,因此当给定这样的流形的无限集合时,讨论聚类或收敛是有意义的。镜像对称是物理学家首先发现的一种现象:在流行的10维宇宙弦理论模型中,不可见的6维以具有一定对称性的所谓Calabi-Yau流形出现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei-Dong Ruan其他文献
Degeneration of Kahler-Einstein hypersurfaces in complex torus to generalized pair of pants decomposition
- DOI:
- 发表时间:
2003-11 - 期刊:
- 影响因子:0
- 作者:
Wei-Dong Ruan - 通讯作者:
Wei-Dong Ruan
Canonical coordinates and Bergman metrics
- DOI:
10.4310/cag.1998.v6.n3.a5 - 发表时间:
1996-10 - 期刊:
- 影响因子:0
- 作者:
Wei-Dong Ruan - 通讯作者:
Wei-Dong Ruan
Degeneration of Kahler-Einstein manifolds I: The normal crossing case
- DOI:
10.1142/s0219199704001331 - 发表时间:
2003-03 - 期刊:
- 影响因子:1.6
- 作者:
Wei-Dong Ruan - 通讯作者:
Wei-Dong Ruan
Lagrangian torus fibration and mirror symmetry of Calabi-Yau hypersurface in toric variety
- DOI:
- 发表时间:
2000-07 - 期刊:
- 影响因子:0
- 作者:
Wei-Dong Ruan - 通讯作者:
Wei-Dong Ruan
Newton polygon and string diagram
- DOI:
10.4310/cag.2007.v15.n1.a3 - 发表时间:
2000-11 - 期刊:
- 影响因子:0.7
- 作者:
Wei-Dong Ruan - 通讯作者:
Wei-Dong Ruan
Wei-Dong Ruan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei-Dong Ruan', 18)}}的其他基金
Lagrangian Torus Fibration of Calabi-Yau Manifolds and Application to Mirror Symmetry
卡拉比-丘流形的拉格朗日环面纤维及其在镜面对称中的应用
- 批准号:
0104150 - 财政年份:2001
- 资助金额:
$ 7.85万 - 项目类别:
Continuing Grant
Convergence and Collapsing of Kahler Manifolds and Mathematical Theory of Mirror Symmetry
卡勒流形的收敛与塌缩与镜像对称的数学理论
- 批准号:
0196188 - 财政年份:2000
- 资助金额:
$ 7.85万 - 项目类别:
Standard Grant
相似海外基金
Geometry and collapsing theory of Alexandrov spaces
亚历山德罗夫空间的几何和塌陷理论
- 批准号:
22KJ2099 - 财政年份:2023
- 资助金额:
$ 7.85万 - 项目类别:
Grant-in-Aid for JSPS Fellows
YAP and TAZ: novel regulators of collapsing glomerulopathy
YAP 和 TAZ:塌陷性肾小球病的新型调节因子
- 批准号:
478296 - 财政年份:2023
- 资助金额:
$ 7.85万 - 项目类别:
Operating Grants
YAP and TAZ: novel regulators of collapsing glomerulopathy
YAP 和 TAZ:塌陷性肾小球病的新型调节因子
- 批准号:
477295 - 财政年份:2022
- 资助金额:
$ 7.85万 - 项目类别:
Operating Grants
Detection of collapsing peripheral bulge in Antarctica using satellite gravity data and GIA modeling
使用卫星重力数据和 GIA 建模检测南极洲塌陷的外围隆起
- 批准号:
20K22372 - 财政年份:2020
- 资助金额:
$ 7.85万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Collapsing bubbles in complex geometries
复杂几何形状中的气泡破裂
- 批准号:
2281992 - 财政年份:2019
- 资助金额:
$ 7.85万 - 项目类别:
Studentship
Elucidation of collapsing and re-stabilizing mechanisms in microbial ecosystems
阐明微生物生态系统的崩溃和重新稳定机制
- 批准号:
19K22927 - 财政年份:2019
- 资助金额:
$ 7.85万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Sedimentation Waves in Collapsing Volcanic Plumes
崩塌火山羽流中的沉积波
- 批准号:
504918-2017 - 财政年份:2019
- 资助金额:
$ 7.85万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Sedimentation Waves in Collapsing Volcanic Plumes
崩塌火山羽流中的沉积波
- 批准号:
504918-2017 - 财政年份:2018
- 资助金额:
$ 7.85万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Investigation of inner mitochondrial collapsing in response to acute cardiac overstretch.
研究急性心脏过度伸展引起的线粒体内塌陷。
- 批准号:
18K19435 - 财政年份:2018
- 资助金额:
$ 7.85万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Collaborative Research: Globular Cluster Formation in Hierarchically Collapsing Clouds as an Origin for Multiple Stellar Populations
合作研究:分层塌缩云中球状星团的形成作为多个恒星族的起源
- 批准号:
1814772 - 财政年份:2018
- 资助金额:
$ 7.85万 - 项目类别:
Standard Grant














{{item.name}}会员




