Index Theory and K-Theory for Operator Algebras
算子代数的索引理论和 K 理论
基本信息
- 批准号:9704001
- 负责人:
- 金额:$ 10.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-05-15 至 2001-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9704001 Baum This research project centers on a conjecture formulated by P. Baum and A. Connes. If true, this conjecture gives an answer to the problem of understanding and calculating the K-theory of group C*-algebras. Validity of the conjecture implies validity for the Novikov conjecture (homotopy invariance of higher signatures), the stable Gromov-Lawson-Rosenberg conjecture (necessary and sufficient conditions for a closed Spin manifold to admit a Riemannian metric of positive scalar curvature), and the Kadison-Kaplansky conjecture (non-existence of idempotents in the reduced C*-algebra of a torsion-free discrete group). When applied to Lie groups, the conjecture makes precise the Mackey-Wigner analogy between the tempered representation theory of a semi-simple Lie group G and the representation theory of the semi-direct product Lie group that Mackey and Wigner associate to G. Thus the conjecture is unusual in that it cuts across several different areas of mathematics and unifies a number of problems and issues that previously appeared to be unrelated. A theme in nineteenth and twentieth century mathematics has been that certain features of mathematical systems that at first glance seem to be analytical (i.e., based on methods of calculus such as differentiation and integration) in fact are topological (i.e., depend only on elementary continuous geometry). This research project develops this theme within the new context of non-commutative geometry. A conjecture (formulated by P. Baum and A. Connes) will be studied that relates analytic and topological invariants of locally compact groups. If true, the conjecture will be an underlying principle revealing an unexpected unity in a number of mathematical problems and issues. ***
9704001鲍姆本研究项目以P·鲍姆和A·康尼斯提出的一个猜想为中心。如果为真,则这个猜想回答了群C*-代数的K-理论的理解和计算问题。这个猜想的有效性意味着Novikov猜想(高签名的同伦不变性)、稳定的Gromov-Lawson-Rosenberg猜想(闭自旋流形允许正标量曲率的黎曼度量的充要条件)和Kadison-Kaplansky猜想(在无挠离散群的约化C*-代数中不存在幂等元)。当应用于李群时,该猜想使半单李群G的调和表示理论与Mackey和Wigner联系到G的半直积李群的表示理论之间的Mackey-Wigner类比更加精确。因此,这个猜想是不寻常的,因为它跨越了数学的几个不同领域,并统一了许多以前看起来不相关的问题和问题。19世纪和20世纪数学的一个主题是,数学系统的某些特征乍一看似乎是解析的(即,基于微积分等微积分方法),实际上是拓扑的(即,仅依赖于初等连续几何)。本研究项目在非对易几何的新背景下发展了这一主题。我们将研究一个猜想(由P.Baum和A.Connes提出),它把局部紧群的解析不变量和拓扑不变量联系起来。如果是真的,这个猜想将是一个基本原理,揭示了许多数学问题和问题中意想不到的统一性。***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Baum其他文献
Student and faculty perceptions of teaching effectiveness
- DOI:
10.1007/bf00991824 - 发表时间:
1980-01-01 - 期刊:
- 影响因子:2.300
- 作者:
Paul Baum;William W. Brown - 通讯作者:
William W. Brown
A proof of the Baum-Connes conjecture for <em>p</em>-adic GL(<em>n</em>)
- DOI:
10.1016/s0764-4442(97)84594-6 - 发表时间:
1997-07-01 - 期刊:
- 影响因子:
- 作者:
Paul Baum;Nigel Higson;Roger Plymen - 通讯作者:
Roger Plymen
Paul Baum的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul Baum', 18)}}的其他基金
Applications of Non-Commutative Geometry
非交换几何的应用
- 批准号:
1500508 - 财政年份:2015
- 资助金额:
$ 10.5万 - 项目类别:
Continuing Grant
Applications of Non-Commutative Geometry
非交换几何的应用
- 批准号:
1200475 - 财政年份:2012
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant
Applications of Non-Commutative Geometry
非交换几何的应用
- 批准号:
0701184 - 财政年份:2007
- 资助金额:
$ 10.5万 - 项目类别:
Continuing Grant
Applications of Non-Commutative Geometry
非交换几何的应用
- 批准号:
0202832 - 财政年份:2002
- 资助金额:
$ 10.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: K-Theory for Operator Algebras, Index Theory, Riemann-Roch
数学科学:算子代数的 K 理论、指数理论、Riemann-Roch
- 批准号:
9401440 - 财政年份:1994
- 资助金额:
$ 10.5万 - 项目类别:
Continuing Grant
U.S.-U.K. Cooperative Research: Operator K-Theory and Representation Theory for Semisimple p-adic Groups
美英合作研究:半单p进群的算子K理论和表示论
- 批准号:
9113392 - 财政年份:1992
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant
Mathematical Sciences: K-Theory for Operator Algebras, IndexTheory, Riemann-Roch
数学科学:算子代数的 K 理论、索引理论、Riemann-Roch
- 批准号:
9102530 - 财政年份:1991
- 资助金额:
$ 10.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: K-Theory, Index Theory, and Delocalized Equivariant Cohomology
数学科学:K 理论、指数理论和离域等变上同调
- 批准号:
8801346 - 财政年份:1988
- 资助金额:
$ 10.5万 - 项目类别:
Continuing Grant
K Theory of Foliations and Lie Group: Applications to IndexTheory and Representation Theory
叶状结构和李群的 K 理论:在指标理论和表示理论中的应用
- 批准号:
8116142 - 财政年份:1982
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant
Analytical and Topological K-Theory; Riemann Surfaces, Harmonic Volume, and Harmonic Maps; and Intersection Homology Theory (Mathematics)
解析和拓扑 K 理论;
- 批准号:
8202334 - 财政年份:1982
- 资助金额:
$ 10.5万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Operator algebras and index theory in quantum walks and quantum information theory
量子行走和量子信息论中的算子代数和索引论
- 批准号:
24K06756 - 财政年份:2024
- 资助金额:
$ 10.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
K-theory of Operator Algebras and Index Theory on Spaces of Singularities
算子代数的K理论与奇点空间索引论
- 批准号:
2247322 - 财政年份:2023
- 资助金额:
$ 10.5万 - 项目类别:
Continuing Grant
Deepening and application to integrable systems of index theory via perturbation of Dirac operator
基于狄拉克算子摄动的指标论可积系统的深化及应用
- 批准号:
26800045 - 财政年份:2014
- 资助金额:
$ 10.5万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Geometric Applications of Dirac Operator and Atiyah-Singer Index Theory
狄拉克算子和Atiyah-Singer指数理论的几何应用
- 批准号:
1007041 - 财政年份:2010
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant
Dirac operator, Atiyah-Singer index theory, and applications
狄拉克算子、Atiyah-Singer 指数理论及应用
- 批准号:
0707000 - 财政年份:2007
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant
Applications of Operator Algebras and Index Theory to Analysis on Singular Spaces
算子代数和指数论在奇异空间分析中的应用
- 批准号:
0555831 - 财政年份:2006
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant
Applications of operator K-theory in topology, harmonic analysis, index theory
算子K理论在拓扑、调和分析、指数论中的应用
- 批准号:
0400980 - 财政年份:2004
- 资助金额:
$ 10.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: K-Theory for Operator Algebras, Index Theory, Riemann-Roch
数学科学:算子代数的 K 理论、指数理论、Riemann-Roch
- 批准号:
9401440 - 财政年份:1994
- 资助金额:
$ 10.5万 - 项目类别:
Continuing Grant
Operator Theory Associated With Scattering, Engineering, AndThe Fredholm Index
与散射、工程和 Fredholm 指数相关的算子理论
- 批准号:
7607006 - 财政年份:1976
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant
Operator Theory Associated With Scattering, Engineering and The Fredholm Index
与散射、工程和 Fredholm 指数相关的算子理论
- 批准号:
7506482 - 财政年份:1975
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant