Applications of Operator Algebras and Index Theory to Analysis on Singular Spaces
算子代数和指数论在奇异空间分析中的应用
基本信息
- 批准号:0555831
- 负责人:
- 金额:$ 17.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-12-01 至 2010-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractNistorThe proposed research extends and strengthensthe field of applications of Operator Algebras. It leads to newresults on the structure and representations of groupoid algebras associatedto singular spaces and non-compact manifolds. It leads alsoto a new characterization of the Fredholm operators on non-compactand singular spaces based on representations of groupoid C_-algebras.Using also methods from Noncommutative Geometry (cyclic homology,Chern character, smooth subalgebras) the indices and relative indicesof operators on singular and non-compact spaces will be computed.These index theorems are non-local, so they will lead to spectral invariants,generalizing the eta-invariant, that will be investigated. Thehomology, K-theory, and other invariants of the relevant operator algebraswill also be determined. The spectrum and the structure of thedistribution kernels of operators on singular spaces will be investigated.The proposed research will have applications to numericalmethods for polyhedral domains, which are important in Engineering(an example is the method of layer potentials), and to the analysis onnon-compact manifolds with nice ends, which arise in String Theoryand General Relativity. This proposal will contribute to the developmentof the general techniques necessary to approach mathematicaland computational problems from Biology, Chemistry, Engineering,and Physics. It will also contribute to applying mathematical resultsin practice by interactions with researchers from other fields, by organizingconferences, and by advising students, which will lead to thecreation of specialists able to use theoretical tools to handle practicalproblems.
本文的研究拓展和加强了算子代数的应用领域。这一结果在奇异空间和非紧流形上的广群代数的结构和表示上得到了新的结果。利用广群C_-代数的表示方法,给出了非紧奇异空间上Fredholm算子的一个新的刻画(循环同调,Chern特征标,光滑子代数)计算奇异空间和非紧空间上算子的指数和相对指数,这些指数定理是非局部的,因此它们将导致谱不变量,推广η-不变量,这将被调查。Thehomology,K-理论,和其他不变量的相关运营商algebras也将被确定。本文将研究奇异空间上算子的谱和分布核的结构,并将应用于工程中重要的多面体域的数值方法(例如层势方法),以及弦理论和广义相对论中出现的具有良好端点的非紧流形的分析。这一建议将有助于从生物学、化学、工程学和物理学的角度来处理几何学和计算问题所必需的一般技术的发展。它还将通过与其他领域的研究人员的互动,组织会议和为学生提供建议,从而有助于应用数学成果实践,这将导致能够使用理论工具来处理实际问题的专家的创建。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Victor Nistor其他文献
Fredholm Criteria for Pseudo differential Operators and induced Representations of Groupoid Algebras
伪微分算子的 Fredholm 准则和群群代数的诱导表示
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Catarina Carvalho;Victor Nistor;Yu Qiao - 通讯作者:
Yu Qiao
Fredholm Conditions on Non-compact Manifolds: Theory and Examples
非紧流形上的 Fredholm 条件:理论与示例
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Catarina Carvalho;Victor Nistor;Yu Qiao - 通讯作者:
Yu Qiao
Boundary value problems and layer potentials on manifolds with cylindrical ends
- DOI:
10.1007/s10587-007-0118-9 - 发表时间:
2007-12-01 - 期刊:
- 影响因子:0.500
- 作者:
Marius Mitrea;Victor Nistor - 通讯作者:
Victor Nistor
The Stokes operator on manifolds with cylindrical ends
具有柱形端的流形上的斯托克斯算子
- DOI:
10.1016/j.jde.2024.06.017 - 发表时间:
2024-10-25 - 期刊:
- 影响因子:2.300
- 作者:
Mirela Kohr;Victor Nistor;Wolfgang L. Wendland - 通讯作者:
Wolfgang L. Wendland
Sobolev spaces and $$\nabla $$ -differential operators on manifolds I: basic properties and weighted spaces
- DOI:
10.1007/s10455-022-09824-6 - 发表时间:
2022-01-28 - 期刊:
- 影响因子:0.700
- 作者:
Mirela Kohr;Victor Nistor - 通讯作者:
Victor Nistor
Victor Nistor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Victor Nistor', 18)}}的其他基金
Numerical treatment of singularities and the Generalized Finite Element Method: theory, algorithms, and applications
奇点的数值处理和广义有限元方法:理论、算法和应用
- 批准号:
1016556 - 财政年份:2010
- 资助金额:
$ 17.6万 - 项目类别:
Standard Grant
Research Experience in Numerical Methods for Partial Differential Equations with Singularities
奇异性偏微分方程数值方法的研究体会
- 批准号:
0713743 - 财政年份:2007
- 资助金额:
$ 17.6万 - 项目类别:
Standard Grant
Global Methods in the Analysis on Singular Spaces and Partial Differential Equations
奇异空间和偏微分方程分析中的全局方法
- 批准号:
0200808 - 财政年份:2002
- 资助金额:
$ 17.6万 - 项目类别:
Continuing Grant
U.S.-France Cooperative Research: Index Theorems, Residues, Eta Invariants, and Foliations
美法合作研究:指数定理、留数、Eta 不变量和叶状结构
- 批准号:
9981251 - 财政年份:2000
- 资助金额:
$ 17.6万 - 项目类别:
Standard Grant
Mathematical Sciences: Index Theory and Cyclic Cohomology
数学科学:指数论和循环上同调
- 批准号:
9205542 - 财政年份:1992
- 资助金额:
$ 17.6万 - 项目类别:
Standard Grant
相似海外基金
Theory and applications of operator systems and operator algebras
算子系统和算子代数的理论与应用
- 批准号:
RGPIN-2019-03923 - 财政年份:2022
- 资助金额:
$ 17.6万 - 项目类别:
Discovery Grants Program - Individual
Banach algebras, operator spaces and their applications to locally compact quantum groups
Banach代数、算子空间及其在局部紧量子群中的应用
- 批准号:
RGPIN-2019-04579 - 财政年份:2022
- 资助金额:
$ 17.6万 - 项目类别:
Discovery Grants Program - Individual
Theory and applications of operator systems and operator algebras
算子系统和算子代数的理论与应用
- 批准号:
RGPIN-2019-03923 - 财政年份:2021
- 资助金额:
$ 17.6万 - 项目类别:
Discovery Grants Program - Individual
Operator Algebras and Applications
算子代数及其应用
- 批准号:
RGPIN-2017-06719 - 财政年份:2021
- 资助金额:
$ 17.6万 - 项目类别:
Discovery Grants Program - Individual
Banach algebras, operator spaces and their applications to locally compact quantum groups
Banach代数、算子空间及其在局部紧量子群中的应用
- 批准号:
RGPIN-2019-04579 - 财政年份:2021
- 资助金额:
$ 17.6万 - 项目类别:
Discovery Grants Program - Individual
Theory and applications of operator systems and operator algebras
算子系统和算子代数的理论与应用
- 批准号:
RGPIN-2019-03923 - 财政年份:2020
- 资助金额:
$ 17.6万 - 项目类别:
Discovery Grants Program - Individual
Applications of Tensor Categories in Operator Algebras
张量范畴在算子代数中的应用
- 批准号:
2100531 - 财政年份:2020
- 资助金额:
$ 17.6万 - 项目类别:
Standard Grant
Operator Algebras and Applications
算子代数及其应用
- 批准号:
RGPIN-2017-06719 - 财政年份:2020
- 资助金额:
$ 17.6万 - 项目类别:
Discovery Grants Program - Individual
CBMS Conference: K-theory of Operator Algebras and Its Applications to Geometry and Topology
CBMS 会议:算子代数的 K 理论及其在几何和拓扑中的应用
- 批准号:
1933327 - 财政年份:2020
- 资助金额:
$ 17.6万 - 项目类别:
Standard Grant
Banach algebras, operator spaces and their applications to locally compact quantum groups
Banach代数、算子空间及其在局部紧量子群中的应用
- 批准号:
RGPIN-2019-04579 - 财政年份:2020
- 资助金额:
$ 17.6万 - 项目类别:
Discovery Grants Program - Individual