The Kepler Conjecture

开普勒猜想

基本信息

项目摘要

This project will give a solution to the Kepler conjecture, the oldest problem in discrete geometry. It asserts that the face-centered cubic packing is one of the densest possible packing of spheres. There is now a well-developed program for proving the conjecture. In fact, it has been known since the 1950's, through the work of L. Fejes Toth, that this problem can be reduced to an optimization problem in a finite number of variables. Over the last two years, the computational methods have been developed to the point that the Kepler conjecture finally appears to be within reach. The proof will rely heavily on computer calculations. Linear relaxation techniques will be used to replace the nonlinear optimization problem with a series of linear programming problems. These linear programming problems tend to involve about a hundred variables and less than two thousand constraints. Problems of this size are routinely solved by computer. To guarantee the reliability of computer calculations, IEEE/ANSI standards of machine computation, which permit directed rounding in floating-point arithmetic, will be used. This will be based on methods of interval arithmetic, which give control over the round-off errors that arise in computer calculations. In a booklet published in 1611, Kepler described the densest known arrangement of spheres. He asserted that "the packing will be the tightest possible, so that in no other arrangement could more pellets be stuffed into the same container." This claim has come to be known as the Kepler conjecture. The Kepler conjecture is the oldest problem in discrete geometry. The problem is notoriously difficult. It has a long and distinguished history. By now, there is a well-developed program for proving the conjecture. This project will complete a proof of the Kepler conjecture. In addition to the historical importance of the conjecture, the theory of sphere packings has developed as an important mathematical tool in various scientific pursuits, such as error-correc ting codes, experimental design, and quantization problems. One of the most fundamental questions of this rapidly growing branch of mathematics will be answered. The solution will make a novel application of linear programming, global optimization, interval arithmetic, and other computer-based technologieq.
这个项目将解决开普勒猜想,离散几何中最古老的问题。它断言面心立方堆积是球体可能最致密的堆积之一。 现在有一个完善的程序来证明这个猜想。事实上,早在20世纪50年代,通过L. Fejes Toth认为,这个问题可以简化为有限个变量的优化问题。在过去的两年里,计算方法已经发展到开普勒猜想终于似乎触手可及的地步。 证明将主要依靠计算机计算。 线性松弛技术将被用来取代一系列的线性规划问题的非线性优化问题。 这些线性规划问题往往涉及大约100个变量和不到2000个约束。 这种规模的问题通常由计算机解决。为了保证计算机计算的可靠性,将使用IEEE/ANSI机器计算标准,该标准允许浮点运算中的定向舍入。 这将以区间算术方法为基础,这种方法可以控制计算机计算中出现的舍入误差。 在1611年出版的一本小册子中,开普勒描述了已知的天体排列。 他声称,“包装将是最紧密的可能,所以在没有其他安排可以更多的颗粒被塞进同一个容器。“这一说法后来被称为开普勒猜想。开普勒猜想是离散几何中最古老的问题。这个问题是出了名的难。它有着悠久而杰出的历史。到目前为止,已经有了一个完善的证明该猜想的程序。 这个项目将完成开普勒猜想的证明。除了猜想的历史重要性之外,球填充理论已经发展成为各种科学追求中的重要数学工具,例如纠错码,实验设计和量化问题。 这个迅速发展的数学分支的最基本的问题之一将得到回答。 该方法是线性规划、全局优化、区间算法等计算机技术的一种新的应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Hales其他文献

Thomas Hales的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Hales', 18)}}的其他基金

The Reinhardt and Ulam Conjectures
莱因哈特和乌拉姆猜想
  • 批准号:
    1104102
  • 财政年份:
    2012
  • 资助金额:
    $ 8.13万
  • 项目类别:
    Standard Grant
The Formal Proof of the Kepler Conjecture
开普勒猜想的形式证明
  • 批准号:
    0804189
  • 财政年份:
    2008
  • 资助金额:
    $ 8.13万
  • 项目类别:
    Standard Grant
Formal Foundations of Discrete Geometry
离散几何的形式基础
  • 批准号:
    0503447
  • 财政年份:
    2005
  • 资助金额:
    $ 8.13万
  • 项目类别:
    Standard Grant
Characters, Motives, and First-order Logic
人物、动机和一阶逻辑
  • 批准号:
    0245332
  • 财政年份:
    2003
  • 资助金额:
    $ 8.13万
  • 项目类别:
    Continuing Grant
Motive Representation Theory
动机表征理论
  • 批准号:
    0224963
  • 财政年份:
    2002
  • 资助金额:
    $ 8.13万
  • 项目类别:
    Continuing Grant
Motive Representation Theory
动机表征理论
  • 批准号:
    0070716
  • 财政年份:
    2000
  • 资助金额:
    $ 8.13万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: A Stable Trace Formula for the Rank-Two Symplectic Group
数学科学:二阶辛群的稳定迹公式
  • 批准号:
    9401691
  • 财政年份:
    1994
  • 资助金额:
    $ 8.13万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
  • 批准号:
    8905652
  • 财政年份:
    1989
  • 资助金额:
    $ 8.13万
  • 项目类别:
    Fellowship Award
Mathematical Sciences: Automorphic Forms and Representation Theory
数学科学:自守形式和表示论
  • 批准号:
    8715402
  • 财政年份:
    1987
  • 资助金额:
    $ 8.13万
  • 项目类别:
    Standard Grant
Graduate Fellowship Support Grant
研究生奖学金支持补助金
  • 批准号:
    8264153
  • 财政年份:
    1982
  • 资助金额:
    $ 8.13万
  • 项目类别:
    Fellowship Award

相似海外基金

The 2nd brick-Brauer-Thrall conjecture via tau-tilting theory and representation varieties
通过 tau 倾斜理论和表示变体的第二个砖-布劳尔-萨尔猜想
  • 批准号:
    24K16908
  • 财政年份:
    2024
  • 资助金额:
    $ 8.13万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
New perspectives towards Woodall's Conjecture and the Generalised Berge-Fulkerson Conjecture
伍德尔猜想和广义伯奇-富尔克森猜想的新视角
  • 批准号:
    EP/X030989/1
  • 财政年份:
    2024
  • 资助金额:
    $ 8.13万
  • 项目类别:
    Research Grant
Fractional decomposition of graphs and the Nash-Williams conjecture
图的分数式分解和纳什-威廉姆斯猜想
  • 批准号:
    DP240101048
  • 财政年份:
    2024
  • 资助金额:
    $ 8.13万
  • 项目类别:
    Discovery Projects
Conference: The Mordell conjecture 100 years later
会议:100年后的莫德尔猜想
  • 批准号:
    2420166
  • 财政年份:
    2024
  • 资助金额:
    $ 8.13万
  • 项目类别:
    Standard Grant
Oscillatory Integrals and Falconer's Conjecture
振荡积分和福尔科纳猜想
  • 批准号:
    2424015
  • 财政年份:
    2024
  • 资助金额:
    $ 8.13万
  • 项目类别:
    Standard Grant
On the m-step solvable Grothendieck conjecture in anabelian geometry
阿贝尔几何中m步可解的格洛腾迪克猜想
  • 批准号:
    23KJ0881
  • 财政年份:
    2023
  • 资助金额:
    $ 8.13万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Some Algorithmic Questions Related to the Mordell Conjecture
与莫德尔猜想相关的一些算法问题
  • 批准号:
    2313466
  • 财政年份:
    2023
  • 资助金额:
    $ 8.13万
  • 项目类别:
    Standard Grant
Diversified study on Manin's conjecture for rational points/rational curves/motives
马宁有理点/有理曲线/动机猜想的多元化研究
  • 批准号:
    23H01067
  • 财政年份:
    2023
  • 资助金额:
    $ 8.13万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
The Inhomogeneous Duffin-Schaeffer Conjecture
非齐次达芬-谢弗猜想
  • 批准号:
    EP/X030784/1
  • 财政年份:
    2023
  • 资助金额:
    $ 8.13万
  • 项目类别:
    Research Grant
Distance Conjecture in Quantum Gravity
量子引力中的距离猜想
  • 批准号:
    23K03379
  • 财政年份:
    2023
  • 资助金额:
    $ 8.13万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了