Characters, Motives, and First-order Logic
人物、动机和一阶逻辑
基本信息
- 批准号:0245332
- 负责人:
- 金额:$ 12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-07-01 至 2005-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The investigator and his colleagues apply a new type of integration, called motivic integration, to the study of representations of p-adic groups and their characters. Motivic integration was introduced in 1995 by M. Kontsevich and developed subsequently by J. Denef, F. Loeser, and others. The arithmetic version of this integral takes values in a ring of virtual Chow motives. Many objects that occur naturally in the representation theory of p-adic groups, including characters of representations, orbital integrals, Shalika germs, and Fourier transforms of orbits have conjectural descriptions in terms of points on varieties over finite fields, or more generally as the trace of Frobenius operators on motives. The research of this proposal will make use motivic integration to affirm that many of these objects have geometric descriptions of the conjectured type.For many years, mathematicians have dreamed that some ofthe fundamental objects of study in algebra should have a uniform description. Until recently, it was not possible to carry out this dream, or even to give precise meaning tothe words. However, by combining three different branches of mathematics -- algebra, geometry, and logic -- it now seems possible to bring this dream to fruition. This field of research relies on methods of mathematical logic to give a geometric interpretation of what was previously considered through pure analysis. Specifically, mathematical logic gives a geometric interpretation (called motivic integration) of integral calculus and measure. The research supported by this grant will use this new tool to give a uniform description of some of the fundamental objects in modern algebra, including symmetry through the mathematics of group representations and their characters.
研究者和他的同事们将一种称为动机整合的新型整合应用于p-adic群体及其特征表征的研究中。动机整合在1995年由M. Kontsevich提出,随后由J. Denef、F. Loeser等人发展。这个积分的算术形式取虚周动机环中的值。在p进群的表示理论中自然出现的许多对象,包括表示的特征、轨道积分、Shalika细菌和轨道的傅立叶变换,都可以用有限域上的变异点来推测描述,或者更一般地作为动机上的Frobenius算子的迹。本提案的研究将利用动机整合来确认许多这些物体具有推测类型的几何描述。多年来,数学家们一直梦想着对代数中的一些基本研究对象有一个统一的描述。直到最近,还不可能实现这个梦,甚至不可能给出它的确切含义。然而,通过结合数学的三个不同分支——代数、几何和逻辑——现在似乎有可能实现这个梦想。这个领域的研究依赖于数学逻辑的方法,对以前通过纯分析来考虑的问题给出几何解释。具体地说,数学逻辑给出了积分和测度的几何解释(称为动机积分)。该基金支持的研究将使用这个新工具对现代代数中的一些基本对象进行统一描述,包括通过群表示及其特征的数学对称。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Hales其他文献
Thomas Hales的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Hales', 18)}}的其他基金
The Formal Proof of the Kepler Conjecture
开普勒猜想的形式证明
- 批准号:
0804189 - 财政年份:2008
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Mathematical Sciences: A Stable Trace Formula for the Rank-Two Symplectic Group
数学科学:二阶辛群的稳定迹公式
- 批准号:
9401691 - 财政年份:1994
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
- 批准号:
8905652 - 财政年份:1989
- 资助金额:
$ 12万 - 项目类别:
Fellowship Award
Mathematical Sciences: Automorphic Forms and Representation Theory
数学科学:自守形式和表示论
- 批准号:
8715402 - 财政年份:1987
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
相似海外基金
Understanding the motives and consequences of parents' educational investment : Competition, Parental Aversion, and Intergenerational mobility.
了解父母教育投资的动机和后果:竞争、父母厌恶和代际流动。
- 批准号:
24K16383 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Conference: Algebraic Cycles, Motives and Regulators
会议:代数环、动机和调节器
- 批准号:
2401025 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Diversified study on Manin's conjecture for rational points/rational curves/motives
马宁有理点/有理曲线/动机猜想的多元化研究
- 批准号:
23H01067 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Children's Choice of Residence and Intra-Family Division of Bequests in Strategic Bequest Motives: Who Will Inherit the House and Take Care of the Parents?
战略性遗赠动机中子女的居住地选择与家庭内部遗赠分割:谁将继承房屋并照顾父母?
- 批准号:
23K01438 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Hitting Close to Home: A Multi-Method Investigation of Neighborhood Characteristics and Drinking Motives on Alcohol-Related Health Disparities
切中要害:对社区特征和饮酒动机对酒精相关健康差异的多方法调查
- 批准号:
10748631 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Mellin motives, periods and high energy physics
梅林的动机、周期和高能物理学
- 批准号:
EP/W020793/1 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Fellowship
Quantum Geometry of Moduli Spaces and Motives
模空间和动机的量子几何
- 批准号:
2153059 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
p-Adic variation of motives
动机的 p-Adic 变化
- 批准号:
RGPIN-2022-04711 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual
Research on Motives and Conditions for Development of Rural Community Resources by Agricultural Corporations
农业企业开发农村社区资源的动因与条件研究
- 批准号:
22K05872 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Scholars' Award: Human Motives - Egoism, hedonism, and the science of affect
学者奖:人类动机——利己主义、享乐主义和情感科学
- 批准号:
2143473 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Standard Grant