Algebraic Aspects of Dimension
维度的代数方面
基本信息
- 批准号:9704372
- 负责人:
- 金额:$ 3.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-07-01 至 2000-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One of the most intuitive geometric concepts is that of dimension. While it is very easy for a non-mathematician to guess the dimension of a particular geometric object, it is fairly difficult to define the dimension in a formal, rigorous way. The first mathematical definition of dimension arises in linear algebra. From that definition one easily understands that the dimensions of the line, the plane, and the 3-space are respectively 1,2, and 3. Ever since the formation of topology as an offshoot of analysis, mathematicians attempted to define dimension in a non-algebraic way. The most intuitive such definition is the so-called small inductive dimension ind(X) of a space X. Essentially, ind(X) at most n means that open sets U with boundary of dimension at most (n-1) form a basis of X. Extension dimension theory is a general theory of dimension in which spaces are not parametrized by natural numbers. Instead, they are parametrized by CW complexes. In this theory dim(X) being at most K means that K is an absolute extensor of X. In particular, dim(X) is at most the n-dimensional sphere S(n) if and only if the covering dimension of X is at most n. dim(X)=K means that K is minimal with respect to all L such that dim(X) is at most L. It turns out that extension dimension encompasses both the covering dimension and the cohomological dimension. It is rich in interplay between geometry and algebra which, to the Principal Investigator, is the cornerstone of all mathematics. In the case of finite-dimensional compacta one has an associated algebraic object called the Bockstein algebra. There is a dual theory to extension dimension which deals with CW complexes and in the case of countable CW complexes there is an associated algebraic object called the dual Bockstein algebra. This project involves the study of 'dimension.' The need to study objects of various dimensions is not unique to mathematics alone. The perception of the dimension of the basic object we live in, the Universe, has undergone signi ficant changes over time. In Newtonian mechanics, the Universe is assumed to be 3-dimensional; Einstein added one more dimension (time). Currently theoretical physicists ponder various models of the Universe aimed at unifying gravity and quantum mechanics; in some models the Universe is of dimension 10 while in others its dimension is 26.
最直观的几何概念之一是维数。虽然对于非数学家来说,猜测一个特定几何对象的尺寸是非常容易的,但要以一种正式的、严格的方式定义尺寸是相当困难的。维数的第一个数学定义出现在线性代数中。根据这个定义,人们很容易理解直线、平面和三维空间的维数分别是1、2和3。自从拓扑学作为分析学的一个分支形成以来,数学家们就试图用非代数的方法来定义维数。 最直观的定义是空间X的小归纳维数ind(X)。本质上,ind(X)至多n意味着边界维数至多为(n-1)的开集U构成X的一个基。扩张维数理论是维数的一般理论,其中空间不是由自然数参数化的。相反,它们由CW复合物参数化。在这个理论中,dim(X)至多为K意味着K是X的绝对扩张子。 特别地,dim(X)至多是n维球面S(n)当且仅当X的覆盖维数至多是n。 dim(X)=K意味着K关于所有L是最小的,使得dim(X)至多是L。证明了扩张维数包含覆盖维数和上同调维数。 它是丰富的几何和代数之间的相互作用,以首席研究员,是所有数学的基石。在有限维代数的情况下,有一个相关的代数对象称为Bockstein代数。 有一个对偶理论,以扩大规模,其中涉及CW复形和可数CW复形的情况下,有一个相关的代数对象称为对偶Bockstein代数。 这个项目涉及到“维度”的研究。“需要研究各种维度的对象并不仅仅是数学所独有的。随着时间的推移,对我们生活的基本对象宇宙的维度的感知经历了重大的变化。在牛顿力学中,宇宙被假定为三维的;爱因斯坦增加了一个维度(时间)。 目前,理论物理学家思考各种宇宙模型,旨在统一引力和量子力学;在一些模型中,宇宙是10维的,而在其他模型中,它的维度是26。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jerzy Dydak其他文献
Extension Theorems for Large Scale Spaces via Coarse Neighbourhoods
- DOI:
10.1007/s00009-018-1106-z - 发表时间:
2018-03-17 - 期刊:
- 影响因子:1.200
- 作者:
Jerzy Dydak;Thomas Weighill - 通讯作者:
Thomas Weighill
Partitions of unity and coverings
- DOI:
10.1016/j.topol.2014.05.015 - 发表时间:
2014-08-15 - 期刊:
- 影响因子:
- 作者:
Kyle Austin;Jerzy Dydak - 通讯作者:
Jerzy Dydak
Galois theory of commutative S-algebras and the generalized Chern character
伽罗瓦交换S-代数理论和广义陈省性
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
E. Cuchillo-Ibanez;Jerzy Dydak;Akira Koyama;M.A. Moron;鳥居 猛 - 通讯作者:
鳥居 猛
Extensions of maps to Moore spaces
- DOI:
10.1007/s11856-015-1190-8 - 发表时间:
2015-03-28 - 期刊:
- 影响因子:0.800
- 作者:
Jerzy Dydak;Michael Levin - 通讯作者:
Michael Levin
Jerzy Dydak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jerzy Dydak', 18)}}的其他基金
International Topology Conference Bedlewo 2005; Bedlewo, Poland
国际拓扑会议 Bedlewo 2005;
- 批准号:
0533289 - 财政年份:2005
- 资助金额:
$ 3.16万 - 项目类别:
Standard Grant
Extension Types of Infinite Symmetric Products
无限对称积的扩展类型
- 批准号:
0072356 - 财政年份:2000
- 资助金额:
$ 3.16万 - 项目类别:
Standard Grant
Mathematical Sciences: Cohomological Dimension
数学科学:上同调维数
- 批准号:
9101283 - 财政年份:1991
- 资助金额:
$ 3.16万 - 项目类别:
Standard Grant
Mathematical Sciences: Spring Topology Conference
数学科学:春季拓扑会议
- 批准号:
8902056 - 财政年份:1988
- 资助金额:
$ 3.16万 - 项目类别:
Standard Grant
Mathematical Sciences: Decomposition of ANR's
数学科学:ANR 的分解
- 批准号:
8503392 - 财政年份:1985
- 资助金额:
$ 3.16万 - 项目类别:
Standard Grant
相似国自然基金
基于构件软件的面向可靠安全Aspects建模和一体化开发方法研究
- 批准号:60503032
- 批准年份:2005
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Statistical aspects of non-linear inverse problems
非线性反问题的统计方面
- 批准号:
EP/Y030249/1 - 财政年份:2024
- 资助金额:
$ 3.16万 - 项目类别:
Research Grant
Combinational, Structural and algorithmic aspects of temporal graphs
时间图的组合、结构和算法方面
- 批准号:
2903280 - 财政年份:2024
- 资助金额:
$ 3.16万 - 项目类别:
Studentship
CAREER: Geometric Aspects of Isoperimetric and Sobolev-type Inequalities
职业:等周和索博列夫型不等式的几何方面
- 批准号:
2340195 - 财政年份:2024
- 资助金额:
$ 3.16万 - 项目类别:
Continuing Grant
Aspects and Functions of Legal Principles in Civil Law Interpretation
民法解释中法律原则的方面和作用
- 批准号:
23K01192 - 财政年份:2023
- 资助金额:
$ 3.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Non-perturbative aspects of three-dimensional quantum gravity
三维量子引力的非微扰方面
- 批准号:
2882187 - 财政年份:2023
- 资助金额:
$ 3.16万 - 项目类别:
Studentship
Various Aspects of the Mechanistic Views of Nature in the Late 19th Century
19世纪末自然机械论的各个方面
- 批准号:
23K00265 - 财政年份:2023
- 资助金额:
$ 3.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference: Human, Engineering, and Scientific Aspects of Disease Transmission in Natural and Built Environments
会议:自然和建筑环境中疾病传播的人类、工程和科学方面
- 批准号:
2332366 - 财政年份:2023
- 资助金额:
$ 3.16万 - 项目类别:
Standard Grant
AF: Small: Theoretical Aspects of Repetition-Aware Text Compression and Indexing
AF:小:重复感知文本压缩和索引的理论方面
- 批准号:
2315822 - 财政年份:2023
- 资助金额:
$ 3.16万 - 项目类别:
Standard Grant
Conference: Motivic and non-commutative aspects of enumerative geometry, Homotopy theory, K-theory, and trace methods
会议:计数几何的本构和非交换方面、同伦理论、K 理论和迹方法
- 批准号:
2328867 - 财政年份:2023
- 资助金额:
$ 3.16万 - 项目类别:
Standard Grant